Son Jeong Woo, Hong Ji Young, Kim Yoon, Kim Woo Jin, Shin Dae-Yong, Choi Hyun-Soo, Bak So Hyeon, Moon Kyoung Min
ZIOVISION, Chuncheon 24341, Korea.
Division of Pulmonary and Critical Care Medicine, Department of Medicine, Chuncheon Sacred Heart Hospital, Hallym University Medical Center, Chuncheon 24253, Korea.
Cancers (Basel). 2022 Jun 28;14(13):3174. doi: 10.3390/cancers14133174.
Early detection of lung nodules is essential for preventing lung cancer. However, the number of radiologists who can diagnose lung nodules is limited, and considerable effort and time are required. To address this problem, researchers are investigating the automation of deep-learning-based lung nodule detection. However, deep learning requires large amounts of data, which can be difficult to collect. Therefore, data collection should be optimized to facilitate experiments at the beginning of lung nodule detection studies. We collected chest computed tomography scans from 515 patients with lung nodules from three hospitals and high-quality lung nodule annotations reviewed by radiologists. We conducted several experiments using the collected datasets and publicly available data from LUNA16. The object detection model, YOLOX was used in the lung nodule detection experiment. Similar or better performance was obtained when training the model with the collected data rather than LUNA16 with large amounts of data. We also show that weight transfer learning from pre-trained open data is very useful when it is difficult to collect large amounts of data. Good performance can otherwise be expected when reaching more than 100 patients. This study offers valuable insights for guiding data collection in lung nodules studies in the future.
Comput Biol Med. 2021-10
Comput Methods Programs Biomed. 2021-7
Med Image Anal. 2021-5
Turk J Biol. 2023-12-18
Cancers (Basel). 2023-2-7
Diagnostics (Basel). 2022-1-25
Commun Biol. 2021-11-12
Comput Methods Programs Biomed. 2021-9
J Big Data. 2021
IEEE/ACM Trans Comput Biol Bioinform. 2021
Cancer Commun (Lond). 2019-4-29