文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

How Many Private Data Are Needed for Deep Learning in Lung Nodule Detection on CT Scans? A Retrospective Multicenter Study.

作者信息

Son Jeong Woo, Hong Ji Young, Kim Yoon, Kim Woo Jin, Shin Dae-Yong, Choi Hyun-Soo, Bak So Hyeon, Moon Kyoung Min

机构信息

ZIOVISION, Chuncheon 24341, Korea.

Division of Pulmonary and Critical Care Medicine, Department of Medicine, Chuncheon Sacred Heart Hospital, Hallym University Medical Center, Chuncheon 24253, Korea.

出版信息

Cancers (Basel). 2022 Jun 28;14(13):3174. doi: 10.3390/cancers14133174.


DOI:10.3390/cancers14133174
PMID:35804946
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9265117/
Abstract

Early detection of lung nodules is essential for preventing lung cancer. However, the number of radiologists who can diagnose lung nodules is limited, and considerable effort and time are required. To address this problem, researchers are investigating the automation of deep-learning-based lung nodule detection. However, deep learning requires large amounts of data, which can be difficult to collect. Therefore, data collection should be optimized to facilitate experiments at the beginning of lung nodule detection studies. We collected chest computed tomography scans from 515 patients with lung nodules from three hospitals and high-quality lung nodule annotations reviewed by radiologists. We conducted several experiments using the collected datasets and publicly available data from LUNA16. The object detection model, YOLOX was used in the lung nodule detection experiment. Similar or better performance was obtained when training the model with the collected data rather than LUNA16 with large amounts of data. We also show that weight transfer learning from pre-trained open data is very useful when it is difficult to collect large amounts of data. Good performance can otherwise be expected when reaching more than 100 patients. This study offers valuable insights for guiding data collection in lung nodules studies in the future.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ed/9265117/1d1056742bb7/cancers-14-03174-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ed/9265117/0b4bdf4baeb4/cancers-14-03174-g0A1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ed/9265117/dd5a16a3cdf5/cancers-14-03174-g0A2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ed/9265117/89aed977540e/cancers-14-03174-g0A3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ed/9265117/ef177cf8d8ce/cancers-14-03174-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ed/9265117/ee40e64d5135/cancers-14-03174-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ed/9265117/415d1403af89/cancers-14-03174-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ed/9265117/163c5e9d4dd0/cancers-14-03174-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ed/9265117/4f05ee8b52e9/cancers-14-03174-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ed/9265117/9e265064db84/cancers-14-03174-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ed/9265117/cd4656368d07/cancers-14-03174-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ed/9265117/1d1056742bb7/cancers-14-03174-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ed/9265117/0b4bdf4baeb4/cancers-14-03174-g0A1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ed/9265117/dd5a16a3cdf5/cancers-14-03174-g0A2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ed/9265117/89aed977540e/cancers-14-03174-g0A3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ed/9265117/ef177cf8d8ce/cancers-14-03174-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ed/9265117/ee40e64d5135/cancers-14-03174-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ed/9265117/415d1403af89/cancers-14-03174-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ed/9265117/163c5e9d4dd0/cancers-14-03174-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ed/9265117/4f05ee8b52e9/cancers-14-03174-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ed/9265117/9e265064db84/cancers-14-03174-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ed/9265117/cd4656368d07/cancers-14-03174-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22ed/9265117/1d1056742bb7/cancers-14-03174-g008.jpg

相似文献

[1]
How Many Private Data Are Needed for Deep Learning in Lung Nodule Detection on CT Scans? A Retrospective Multicenter Study.

Cancers (Basel). 2022-6-28

[2]
A survey of computer-aided diagnosis of lung nodules from CT scans using deep learning.

Comput Biol Med. 2021-10

[3]
Validation of a Deep Learning Algorithm for the Detection of Malignant Pulmonary Nodules in Chest Radiographs.

JAMA Netw Open. 2020-9-1

[4]
Deep Learning Reconstruction Shows Better Lung Nodule Detection for Ultra-Low-Dose Chest CT.

Radiology. 2022-4

[5]
Discrimination between transient and persistent subsolid pulmonary nodules on baseline CT using deep transfer learning.

Eur Radiol. 2020-12

[6]
Development of a deep learning-based method to diagnose pulmonary ground-glass nodules by sequential computed tomography imaging.

Thorac Cancer. 2022-2

[7]
A simplified cluster model and a tool adapted for collaborative labeling of lung cancer CT scans.

Comput Methods Programs Biomed. 2021-7

[8]
LNDb challenge on automatic lung cancer patient management.

Med Image Anal. 2021-5

[9]
Preparing CT imaging datasets for deep learning in lung nodule analysis: Insights from four well-known datasets.

Heliyon. 2023-6-16

[10]
Development and Validation of a Modified Three-Dimensional U-Net Deep-Learning Model for Automated Detection of Lung Nodules on Chest CT Images From the Lung Image Database Consortium and Japanese Datasets.

Acad Radiol. 2022-2

引用本文的文献

[1]
Integration of Single-Cell Analysis and Bulk RNA Sequencing Data Using Multi-Level Attention Graph Neural Network for Precise Prognostic Stratification in Thyroid Cancer.

Cancers (Basel). 2025-7-21

[2]
Clinical efficacy of DSA-based features in predicting outcomes of acupuncture intervention on upper limb dysfunction following ischemic stroke.

Chin Med. 2024-11-9

[3]
Deep learning in bioinformatics.

Turk J Biol. 2023-12-18

[4]
Imaging features and deep learning for prediction of pulmonary epithelioid hemangioendothelioma in CT images.

J Thorac Dis. 2024-2-29

[5]
A robust model training strategy using hard negative mining in a weakly labeled dataset for lymphatic invasion in gastric cancer.

J Pathol Clin Res. 2024-1

[6]
Artificial Intelligence in Oncology: A Topical Collection in 2022.

Cancers (Basel). 2023-2-7

本文引用的文献

[1]
Deep Learning Applications in Computed Tomography Images for Pulmonary Nodule Detection and Diagnosis: A Review.

Diagnostics (Basel). 2022-1-25

[2]
Radiomics-guided deep neural networks stratify lung adenocarcinoma prognosis from CT scans.

Commun Biol. 2021-11-12

[3]
Identification of Benign and Malignant Lung Nodules in CT Images Based on Ensemble Learning Method.

Interdiscip Sci. 2022-3

[4]
TEM virus images: Benchmark dataset and deep learning classification.

Comput Methods Programs Biomed. 2021-9

[5]
Text Data Augmentation for Deep Learning.

J Big Data. 2021

[6]
Deep Learning-Based Stage-Wise Risk Stratification for Early Lung Adenocarcinoma in CT Images: A Multi-Center Study.

Cancers (Basel). 2021-6-30

[7]
Deep Learning Enables Accurate Diagnosis of Novel Coronavirus (COVID-19) With CT Images.

IEEE/ACM Trans Comput Biol Bioinform. 2021

[8]
Use of a Commercially Available Deep Learning Algorithm to Measure the Solid Portions of Lung Cancer Manifesting as Subsolid Lesions at CT: Comparisons with Radiologists and Invasive Component Size at Pathologic Examination.

Radiology. 2021-4

[9]
Preoperative CT-based Deep Learning Model for Predicting Disease-Free Survival in Patients with Lung Adenocarcinomas.

Radiology. 2020-5-12

[10]
Current cancer situation in China: good or bad news from the 2018 Global Cancer Statistics?

Cancer Commun (Lond). 2019-4-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索