Suppr超能文献

用于锂存储的纳米结构锡/碳复合高性能负极

Nanostructure Sn/C Composite High-Performance Negative Electrode for Lithium Storage.

作者信息

Saddique Jaffer, Shen Honglie, Ge Jiawei, Huo Xiaomin, Rahman Nasir, Ahmadi Ahmad Aziz Al, Mushtaq Muhammad

机构信息

Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.

Dalian Product Quality Inspection and Testing Institute Co., Ltd., Dalian 116021, China.

出版信息

Molecules. 2022 Jun 24;27(13):4083. doi: 10.3390/molecules27134083.

Abstract

Tin-based nanocomposite materials embedded in carbon frameworks can be used as effective negative electrode materials for lithium-ion batteries (LIBs), owing to their high theoretical capacities with stable cycle performance. In this work, a low-cost and productive facile hydrothermal method was employed for the preparation of a Sn/C nanocomposite, in which Sn particles (sized in nanometers) were uniformly dispersed in the conductive carbon matrix. The as-prepared Sn/C nanocomposite displayed a considerable reversible capacity of 877 mAhg at 0.1 Ag with a high first cycle charge/discharge coulombic efficiency of about 77%, and showed 668 mAh/g even at a relatively high current density of 0.5 Ag after 100 cycles. Furthermore, excellent rate capability performance was achieved for 806, 697, 630, 516, and 354 mAhg at current densities 0.1, 0.25, 0.5, 0.75, and 1 Ag, respectively. This outstanding and significantly improved electrochemical performance is attributed to the good distribution of Sn nanoparticles in the carbon framework, which helped to produce Sn/C nanocomposite next-generation negative electrodes for lithium-ion storage.

摘要

嵌入碳骨架的锡基纳米复合材料由于其具有高理论容量和稳定的循环性能,可作为锂离子电池(LIBs)的有效负极材料。在这项工作中,采用了一种低成本且高产率的简便水热法制备Sn/C纳米复合材料,其中纳米尺寸的Sn颗粒均匀分散在导电碳基体中。所制备的Sn/C纳米复合材料在0.1 Ag时表现出相当可观的877 mAh/g的可逆容量,首次循环充放电库仑效率约为77%,并且在100次循环后,即使在相对较高的0.5 Ag电流密度下仍显示出668 mAh/g的容量。此外,在电流密度分别为0.1、0.25、0.5、0.75和1 Ag时,分别实现了806、697、630、516和354 mAh/g的优异倍率性能。这种出色且显著改善的电化学性能归因于Sn纳米颗粒在碳骨架中的良好分布,这有助于制备用于锂离子存储的下一代负极材料Sn/C纳米复合材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a612/9268231/027a3755c067/molecules-27-04083-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验