Chen Rui, Liang Yanan, Han Jianwei, Lu Qihong, Chen Qian, Wang Ziyu, Wang Hao, Wang Xuan, Yuan Runjie
National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China.
Institute of Astronomy and Space, University of Chinese Academy of Sciences, Beijing 101408, China.
Nanomaterials (Basel). 2022 Jun 21;12(13):2126. doi: 10.3390/nano12132126.
This paper studies the synergistic effect of total ionizing dose (TID) and displacement damage dose (DDD) in enhancement-mode GaN high electron mobility transistor (HEMT) based on the p-GaN gate and cascode structure using neutron and Co gamma-ray irradiation. The results show that when the accumulated gamma-ray doses are up to 800k rad(Si), the leakage-current degradations of the two types of GaN HEMTs with 14 MeV neutron irradiation of 1.3 × 10 n/cm and 3 × 10 n/cm exhibit a lower degradation than the sum of the two separated effects. However, the threshold voltage shifts of the cascode structure GaN HEMT show a higher degradation when exposed to both TID and DDD effects. Moreover, the failure mechanisms of the synergistic effect in GaN HEMT are investigated using the scanning electron microscopy technique. It is shown that for the p-GaNHEMT, the increase in channel resistance and the degradation of two-dimensional electron gas mobility caused by neutron irradiation suppresses the increase in the TID leakage current. For the cascode structure HEMT, the neutron radiation-generated defects in the oxide layer of the metal-oxide-semiconductor field-effect transistor might capture holes induced by gamma-ray irradiation, resulting in a further increase in the number of trapped charges in the oxide layer.
本文基于p-GaN栅极和共源共栅结构,利用中子和钴γ射线辐照,研究了增强型氮化镓高电子迁移率晶体管(HEMT)中总电离剂量(TID)和位移损伤剂量(DDD)的协同效应。结果表明,当累积γ射线剂量高达800k rad(Si)时,1.3×10 n/cm和3×10 n/cm的14 MeV中子辐照下的两种类型氮化镓HEMT的漏电流退化程度低于两种单独效应之和。然而,共源共栅结构氮化镓HEMT的阈值电压偏移在同时受到TID和DDD效应影响时表现出更高的退化。此外,利用扫描电子显微镜技术研究了氮化镓HEMT中协同效应的失效机制。结果表明,对于p-GaN HEMT,中子辐照引起的沟道电阻增加和二维电子气迁移率退化抑制了TID漏电流的增加。对于共源共栅结构HEMT,金属氧化物半导体场效应晶体管氧化物层中的中子辐射产生的缺陷可能捕获γ射线辐照诱导的空穴,导致氧化物层中俘获电荷数量进一步增加。