Suppr超能文献

基于 LSTM 的半监督对抗学习在人体活动识别中的应用。

Semi-Supervised Adversarial Learning Using LSTM for Human Activity Recognition.

机构信息

Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Korea.

出版信息

Sensors (Basel). 2022 Jun 23;22(13):4755. doi: 10.3390/s22134755.

Abstract

The training of Human Activity Recognition (HAR) models requires a substantial amount of labeled data. Unfortunately, despite being trained on enormous datasets, most current models have poor performance rates when evaluated against anonymous data from new users. Furthermore, due to the limits and problems of working with human users, capturing adequate data for each new user is not feasible. This paper presents semi-supervised adversarial learning using the LSTM (Long-short term memory) approach for human activity recognition. This proposed method trains annotated and unannotated data (anonymous data) by adapting the semi-supervised learning paradigms on which adversarial learning capitalizes to improve the learning capabilities in dealing with errors that appear in the process. Moreover, it adapts to the change in human activity routine and new activities, i.e., it does not require prior understanding and historical information. Simultaneously, this method is designed as a temporal interactive model instantiation and shows the capacity to estimate heteroscedastic uncertainty owing to inherent data ambiguity. Our methodology also benefits from multiple parallel input sequential data predicting an output exploiting the synchronized LSTM. The proposed method proved to be the best state-of-the-art method with more than 98% accuracy in implementation utilizing the publicly available datasets collected from the smart home environment facilitated with heterogeneous sensors. This technique is a novel approach for high-level human activity recognition and is likely to be a broad application prospect for HAR.

摘要

人类活动识别 (HAR) 模型的训练需要大量标记数据。不幸的是,尽管在庞大的数据集上进行了训练,但大多数当前的模型在对新用户的匿名数据进行评估时,性能率都很差。此外,由于与人类用户合作的限制和问题,为每个新用户捕获足够的数据是不可行的。本文提出了一种基于长短时记忆 (LSTM) 方法的半监督对抗学习的人类活动识别方法。该方法通过适应对抗学习所利用的半监督学习范例来训练带注释和未注释的数据(匿名数据),从而提高处理过程中出现的错误的学习能力。此外,它还适应了人类活动常规和新活动的变化,即它不需要事先了解和历史信息。同时,该方法被设计为一个时间交互模型实例化,并展示了由于固有数据模糊性而估计异方差不确定性的能力。我们的方法还受益于多个并行输入顺序数据,利用同步 LSTM 预测输出。该方法在利用智能家居环境中异构传感器收集的公共可用数据集进行实施时,证明是最先进的方法,准确率超过 98%。这项技术是一种新颖的高级人类活动识别方法,很可能在 HAR 中具有广泛的应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff37/9269419/409e5d899672/sensors-22-04755-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验