Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan.
Sensors (Basel). 2022 Jun 25;22(13):4825. doi: 10.3390/s22134825.
For 5G and future Internet, in this paper, we propose a task allocation method for future Internet application to reduce the total latency in a mobile edge computing (MEC) platform with three types of servers: a dedicated MEC server, a shared MEC server, and a cloud server. For this platform, we first calculate the delay between sending a task and receiving a response for the dedicated MEC server, shared MEC server, and cloud server by considering the processing time and transmission delay. Here, the transmission delay for the shared MEC server is derived using queueing theory. Then, we formulate an optimization problem for task allocation to minimize the total latency for all tasks. By solving this optimization problem, tasks can be allocated to the MEC servers and cloud server appropriately. In addition, we propose a heuristic algorithm to obtain the approximate optimal solution in a shorter time. This heuristic algorithm consists of four algorithms: a main algorithm and three additional algorithms. In this algorithm, tasks are divided into two groups, and task allocation is executed for each group. We compare the performance of our proposed heuristic algorithm with the solution obtained by three other methods and investigate the effectiveness of our algorithm. Numerical examples are used to demonstrate the effectiveness of our proposed heuristic algorithm. From some results, we observe that our proposed heuristic algorithm can perform task allocation in a short time and can effectively reduce the total latency in a short time. We conclude that our proposed heuristic algorithm is effective for task allocation in a MEC platform with multiple types of MEC servers.
对于 5G 和未来互联网,在本文中,我们提出了一种未来互联网应用的任务分配方法,以减少具有三种类型服务器的移动边缘计算 (MEC) 平台中的总延迟:专用 MEC 服务器、共享 MEC 服务器和云服务器。对于这个平台,我们首先通过考虑处理时间和传输延迟来计算发送任务和接收响应之间的专用 MEC 服务器、共享 MEC 服务器和云服务器的延迟。这里,使用排队论推导出共享 MEC 服务器的传输延迟。然后,我们制定了一个任务分配的优化问题,以最小化所有任务的总延迟。通过解决这个优化问题,可以适当地将任务分配给 MEC 服务器和云服务器。此外,我们提出了一种启发式算法,以便在更短的时间内获得近似最优解。这种启发式算法由四个算法组成:一个主算法和三个附加算法。在这个算法中,任务被分为两组,并为每组执行任务分配。我们将我们提出的启发式算法的性能与其他三种方法的解决方案进行了比较,并研究了我们算法的有效性。数值示例用于演示我们提出的启发式算法的有效性。从一些结果中,我们观察到我们提出的启发式算法可以在短时间内执行任务分配,并且可以在短时间内有效地降低总延迟。我们得出结论,我们提出的启发式算法对于具有多种类型的 MEC 服务器的 MEC 平台中的任务分配是有效的。