Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
Acta Biomater. 2022 Sep 1;149:198-212. doi: 10.1016/j.actbio.2022.06.046. Epub 2022 Jul 6.
Therapeutic benefits of curcumin for inflammatory diseases have been demonstrated. However, curcumin's potential as a clinical therapeutic has been hindered due to its low solubility and stability in vivo. We hypothesized that a hybrid curcumin carrier that incorporates albumin-binding and extracellular vesicle (EV) encapsulation could effectively address the current challenges of curcumin delivery. We further postulated that using dissolvable microneedle arrays (dMNAs) for local delivery of curcumin-albumin-EVs (CA-EVs) could effectively control skin inflammation in vivo. Mild sonication was used to encapsulate curcumin and albumin into EVs, and the resulting CA-EVs were integrated into tip-loaded dMNAs. In vitro and in vivo studies were performed to assess the stability, cellular uptake, and anti-inflammatory bioactivity of dMNA-delivered CA-EVs. Curcumin in CA-EVs exhibited at least five-fold higher stability in vitro than naïve curcumin or curcumin-EVs without albumin. Incorporating CA-EVs into dMNAs did not alter their cellular uptake or anti-inflammatory bioactivity. The dMNA embedded CA-EVs retained their bioactivity when stored at room temperature for at least 12 months. In rat and mice models, dMNA delivered CA-EVs suppressed and significantly reduced lipopolysaccharide and Imiquimod-triggered inflammation. We conclude that dMNA delivery of CA-EVs has the potential to become an effective local-delivery strategy for inflammatory skin diseases. STATEMENT OF SIGNIFICANCE: We introduce and evaluate a skin-targeted delivery system for curcumin that synergistically combines albumin association, extracellular-vesicle encapsulation, and dissolvable microneedle arrays (dMNAs) . In vitro, curcumin-albumin encapsulated extracellular vesicles (CA-EVs) inhibit and reverse the LPS-triggered expression of inflammatory transcription factor NF-κB. The integration of CA-EVs into dMNAs does not affect them physically or functionally. Importantly, dMNAs extend EV storage stability for at least 12 months at room temperature with minimal loss in their bioactivity. We demonstrate that dMNA delivered CA-EVs effectively block and reverse skin inflammation in vivo in mouse and rat models.
姜黄素在治疗炎症性疾病方面的益处已得到证实。然而,由于其在体内的低溶解度和稳定性,姜黄素作为一种临床治疗药物的潜力受到了限制。我们假设,一种结合了白蛋白结合和细胞外囊泡(EV)包裹的姜黄素混合载体可以有效地解决姜黄素递送的当前挑战。我们进一步假设,使用可溶解的微针阵列(dMNAs)局部递送姜黄素-白蛋白-EV(CA-EVs)可以有效地控制体内皮肤炎症。轻度超声处理用于将姜黄素和白蛋白包裹到 EV 中,所得 CA-EVs 被整合到尖端加载的 dMNAs 中。进行了体外和体内研究,以评估 dMNA 递送的 CA-EV 的稳定性、细胞摄取和抗炎生物活性。与原始姜黄素或没有白蛋白的姜黄素-EV 相比,CA-EV 中的姜黄素在体外至少稳定五倍。将 CA-EVs 掺入 dMNAs 不会改变它们的细胞摄取或抗炎生物活性。当在室温下储存至少 12 个月时,嵌入 dMNA 的 CA-EV 保留其生物活性。在大鼠和小鼠模型中,dMNA 递送的 CA-EV 抑制并显著减轻脂多糖和咪喹莫特触发的炎症。我们得出结论,dMNA 递送 CA-EV 有可能成为治疗炎症性皮肤病的有效局部递送策略。
我们介绍并评估了一种协同结合白蛋白结合、细胞外囊泡包裹和可溶解微针阵列(dMNAs)的姜黄素皮肤靶向递送系统。体外,姜黄素-白蛋白包裹的细胞外囊泡(CA-EVs)抑制并逆转 LPS 触发的炎症转录因子 NF-κB 的表达。将 CA-EVs 整合到 dMNAs 中不会对其物理或功能产生影响。重要的是,dMNAs 将 EV 的储存稳定性延长至至少 12 个月,在室温下,其生物活性几乎没有损失。我们证明,dMNA 递送的 CA-EV 可有效阻止并逆转小鼠和大鼠模型中的体内皮肤炎症。