National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), 200032 Shanghai, PR China.
National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), 200032 Shanghai, PR China; University of Chinese Academy of Sciences (UCAS), Shanghai 200032, PR China.
Trends Plant Sci. 2022 Dec;27(12):1209-1217. doi: 10.1016/j.tplants.2022.06.002. Epub 2022 Jul 6.
Genome-editing technologies have advanced in recent years but designing future crops remains limited by current methods of improving somatic embryogenesis (SE) capacity. In this Opinion, we provide an update on the molecular event by which the phytohormone auxin promotes the acquisition of plant cell totipotency through evoking massive changes in transcriptome and chromatin accessibility. We propose that the chromatin states and individual totipotency-related transcription factors (TFs) from disparate gene families organize into a hierarchical gene regulatory network underlying SE. We conclude with a discussion of the practical paths to probe the cellular origin of the somatic embryo and the epigenetic landscape of the totipotent cell state in the era of single-cell genomics.
近年来,基因组编辑技术取得了进展,但设计未来的作物仍然受到提高体细胞胚胎发生 (SE) 能力的当前方法的限制。在本观点中,我们提供了植物激素生长素通过引发转录组和染色质可及性的巨大变化来促进植物细胞全能性获得的分子事件的最新信息。我们提出,来自不同基因家族的染色质状态和个体全能性相关转录因子 (TF) 组织成一个层次化的基因调控网络,是 SE 的基础。最后,我们讨论了在单细胞基因组学时代探测体细胞胚胎的细胞起源和全能性细胞状态的表观遗传景观的实用途径。