Suppr超能文献

[人工智能与治疗骨不连的新方法:从医学既定标准方法到新研究领域]

[Artificial intelligence and novel approaches for treatment of non-union in bone : From established standard methods in medicine up to novel fields of research].

作者信息

Reumann Marie K, Braun Benedikt J, Menger Maximilian M, Springer Fabian, Jazewitsch Johann, Schwarz Tobias, Nüssler Andreas, Histing Tina, Rollmann Mika F R

机构信息

Klinik für Unfall- und Wiederherstellungschirurgie an der Eberhard Karls Universität Tübingen, BG Klinik Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Deutschland.

Siegfried Weller Institut für Unfallmedizinische Forschung an der Eberhard Karls Universität Tübingen, BG Klinik Tübingen, Tübingen, Deutschland.

出版信息

Unfallchirurgie (Heidelb). 2022 Aug;125(8):611-618. doi: 10.1007/s00113-022-01202-y. Epub 2022 Jul 9.

Abstract

Methods of artificial intelligence (AI) have found applications in many fields of medicine within the last few years. Some disciplines already use these methods regularly within their clinical routine. However, the fields of application are wide and there are still many opportunities to apply these new AI concepts. This review article gives an insight into the history of AI and defines the special terms and fields, such as machine learning (ML), neural networks and deep learning. The classical steps in developing AI models are demonstrated here, as well as the iteration of data rectification and preparation, the training of a model and subsequent validation before transfer into a clinical setting are explained. Currently, musculoskeletal disciplines implement methods of ML and also neural networks, e.g. for identification of fractures or for classifications. Also, predictive models based on risk factor analysis for prevention of complications are being initiated. As non-union in bone is a rare but very complex disease with dramatic socioeconomic impact for the healthcare system, many open questions arise which could be better understood by using methods of AI in the future. New fields of research applying AI models range from predictive models and cost analysis to personalized treatment strategies.

摘要

在过去几年中,人工智能(AI)方法已在医学的许多领域得到应用。一些学科已经在其临床常规工作中经常使用这些方法。然而,应用领域很广泛,应用这些新的人工智能概念仍有很多机会。这篇综述文章深入介绍了人工智能的历史,并定义了机器学习(ML)、神经网络和深度学习等特殊术语和领域。这里展示了开发人工智能模型的经典步骤,还解释了数据校正和准备的迭代过程、模型训练以及在应用于临床环境之前的后续验证。目前,肌肉骨骼学科正在应用机器学习方法以及神经网络,例如用于骨折识别或分类。此外,基于风险因素分析预防并发症的预测模型也正在启动。由于骨不连是一种罕见但非常复杂的疾病,对医疗系统具有巨大的社会经济影响,因此出现了许多悬而未决的问题,未来使用人工智能方法可能会更好地理解这些问题。应用人工智能模型的新研究领域涵盖从预测模型、成本分析到个性化治疗策略等。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验