Department of Biology, College of Science, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates.
The Big Data Analytics Center, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates.
PeerJ. 2022 Jul 5;10:e13680. doi: 10.7717/peerj.13680. eCollection 2022.
The COVID-19 pandemic is still a global public health issue. Omicron, a SARS-CoV-2 B.1.1.529 variant, has raised concerns about transmission and vaccine effectiveness. Omicron currently has the greatest number of variantions.
To gain a better understanding of the significance of these variations and the dynamics of the interaction between the Omicron spike (S) protein and its human host factor angiotensin-converting enzyme 2 (ACE2), triplicate 500 ns molecular dynamics simulations were run using the structure of the S protein's receptor-binding domain (RBD) in complex with ACE2. The interaction and binding energy, determined using the molecular mechanics-generalized Born surface area approach, were compared to the original SARS-CoV-2 and the B.1.617 variant.
Though mutations K417N and G496S in the S protein RBD disrupt interactions found in the original SARS-CoV-2 complex, mutations Q493R and N501Y introduce interactions not found in the original complex. Interaction at a key viral hotspot and hydrophobic contacts at ACE2's N-terminus were preserved, but intermolecular hydrogen bonds and polar contacts in the S-ACE2 interface were lower than in the original SARS-CoV-2 interface.
COVID-19 大流行仍然是一个全球公共卫生问题。奥密克戎(Omicron)是一种 SARS-CoV-2 的 B.1.1.529 变体,它引发了人们对传播和疫苗有效性的担忧。奥密克戎目前拥有最多的变体。
为了更好地了解这些变异的意义,以及奥密克戎刺突(S)蛋白与其人类宿主因子血管紧张素转化酶 2(ACE2)之间相互作用的动态变化,我们使用 ACE2 与 S 蛋白受体结合域(RBD)复合物的结构,进行了三次 500 ns 的分子动力学模拟。使用分子力学-广义 Born 表面积方法,比较了与原始 SARS-CoV-2 和 B.1.617 变体的相互作用和结合能。
尽管 S 蛋白 RBD 中的突变 K417N 和 G496S 破坏了在原始 SARS-CoV-2 复合物中发现的相互作用,但突变 Q493R 和 N501Y 引入了在原始复合物中未发现的相互作用。在病毒热点和 ACE2 N 末端的疏水区的相互作用得以保留,但 S-ACE2 界面中的分子间氢键和极性接触比原始 SARS-CoV-2 界面中的要低。