Suppr超能文献

利用非小细胞肺癌计算机断层扫描衍生的放射组学特征预测具有一致生存获益的放化疗敏感性

Predicting Chemo-Radiotherapy Sensitivity With Concordant Survival Benefit in Non-Small Cell Lung Cancer Computed Tomography Derived Radiomic Features.

作者信息

Liu Yixin, Qi Haitao, Wang Chunni, Deng Jiaxing, Tan Yilong, Lin Lin, Cui Zhirou, Li Jin, Qi Lishuang

机构信息

College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China.

Basic Medicine College, Harbin Medical University, Harbin, China.

出版信息

Front Oncol. 2022 Jun 22;12:832343. doi: 10.3389/fonc.2022.832343. eCollection 2022.

Abstract

BACKGROUND

To identify a computed tomography (CT) derived radiomic signature for the options of concurrent chemo-radiotherapy (CCR) in patients with non-small cell lung cancer (NSCLC).

METHODS

A total of 226 patients with NSCLC receiving CCR were enrolled from public dataset, and allocated to discovery and validation sets based on patient identification number. Using CT images of 153 patients in the discovery dataset, we pre-selected a list of radiomic features significantly associated with 5-year survival rate and adopted the least absolute shrinkage and selection operator regression to establish a predictive radiomic signature for CCR treatment. We performed transcriptomic analyzes of the signature, and evaluated its association with molecular lesions and immune landscapes in a dataset with matched CT images and transcriptome data. Furthermore, we identified CCR resistant genes positively correlated with resistant scores of radiomic signature and screened essential resistant genes for NSCLC using genome-scale CRIPSR data. Finally, we combined DrugBank and Genomics of Drug Sensitivity in Cancer databases to excavate candidate therapeutic agents for patients with CCR resistance, and validated them using the Connectivity Map dataset.

RESULTS

The radiomic signature consisting of nine features was established, and then validated in the dataset of 73 patients receiving CCR log-rank P = 0.0005, which could distinguish patients into resistance and sensitivity groups, respectively, with significantly different 5-year survival rate. Furthermore, the novel proposed radiomic nomogram significantly improved the predictive performance (concordance indexes) of clinicopathological factors. Transcriptomic analyzes linked our signature with important tumor biological processes (e.g. glycolysis/glucoseogenesis, ribosome). Then, we identified 36 essential resistant genes, and constructed a gene-agent network including 10 essential resistant genes and 35 candidate therapeutic agents, and excavated AT-7519 as the therapeutic agent for patients with CCR resistance. The therapeutic efficacy of AT-7519 was validated that significantly more resistant genes were down-regulated induced by AT-7519, and the degree gradually increased with the enhanced doses.

CONCLUSIONS

This study illustrated that radiomic signature could non-invasively predict therapeutic efficacy of patients with NSCLC receiving CCR, and indicated that patients with CCR resistance might benefit from AT-7519 or CCR treatment combined with AT-7519.

摘要

背景

为非小细胞肺癌(NSCLC)患者同步放化疗(CCR)方案确定一种基于计算机断层扫描(CT)的放射组学特征。

方法

从公共数据集中纳入226例接受CCR的NSCLC患者,并根据患者识别号分配至发现集和验证集。利用发现数据集中153例患者的CT图像,我们预先选择了一系列与5年生存率显著相关的放射组学特征,并采用最小绝对收缩和选择算子回归建立CCR治疗的预测放射组学特征。我们对该特征进行了转录组分析,并在一个具有匹配CT图像和转录组数据的数据集中评估了其与分子病变和免疫图谱的关联。此外,我们鉴定了与放射组学特征的耐药评分呈正相关的CCR耐药基因,并使用全基因组CRISPR数据筛选NSCLC的必需耐药基因。最后,我们结合药物银行和癌症药物敏感性基因组学数据库挖掘CCR耐药患者的候选治疗药物,并使用连通性图谱数据集对其进行验证。

结果

建立了由九个特征组成的放射组学特征,然后在73例接受CCR的患者数据集中进行验证(对数秩P = 0.0005),该特征可将患者分别分为耐药组和敏感组,5年生存率有显著差异。此外,新提出的放射组学列线图显著提高了临床病理因素的预测性能(一致性指数)。转录组分析将我们的特征与重要的肿瘤生物学过程(如糖酵解/糖异生、核糖体)联系起来。然后,我们鉴定了36个必需耐药基因,并构建了一个包括10个必需耐药基因和35个候选治疗药物的基因-药物网络,挖掘出AT-7519作为CCR耐药患者的治疗药物。AT-7519的治疗效果得到验证,即AT-7519诱导的耐药基因下调明显更多,且随着剂量增加程度逐渐增加。

结论

本研究表明,放射组学特征可无创性预测接受CCR的NSCLC患者的治疗效果,并表明CCR耐药患者可能从AT-7519或CCR与AT-7519联合治疗中获益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6c5/9256940/8ac7247b7a1b/fonc-12-832343-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验