Suppr超能文献

用于太阳能转换和存储的人工光合作用系统:平台及其现实情况。

Artificial photosynthesis systems for solar energy conversion and storage: platforms and their realities.

机构信息

Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.

State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.

出版信息

Chem Soc Rev. 2022 Aug 1;51(15):6704-6737. doi: 10.1039/d1cs01008e.

Abstract

In natural photosynthesis, photosynthetic organisms such as green plants realize efficient solar energy conversion and storage by integrating photosynthetic components on the thylakoid membrane of chloroplasts. Inspired by natural photosynthesis, researchers have developed many artificial photosynthesis systems (APS's) that integrate various photocatalysts and biocatalysts to convert and store solar energy in the fields of resource, environment, food, and energy. To improve the system efficiency and reduce the operation cost, reaction platforms are introduced in APS's since they allow for great stability and continuous processing. A systematic understanding of how a reaction platform affects the performance of artificial photosynthesis is conducive for designing an APS with superb solar energy utilization. In this review, we discuss the recent APS's researches, especially those confined on/in platforms. The importance of different platforms and their influences on APS's performance are emphasized. Generally, confined platforms can enhance the stability and repeatability of both photocatalysts and biocatalysts in APS's as well as improve the photosynthetic performance due to the proximity effect. For functional platforms that can participate in the artificial photosynthesis reactions as active parts, a high integration of APS's components on/in these platforms can lead to efficient electron transfer, enhanced light-harvesting, or synergistic catalysis, resulting in superior photosynthesis performance. Therefore, the integration of APS's components is beneficial for the transfer of substrates and photoexcited electrons in artificial photosynthesis. We finally summarize the current challenges of APS's development and further efforts on the improvement of APS's.

摘要

在自然光合作用中,光合生物(如绿色植物)通过将光合组件整合到叶绿体的类囊体膜上来实现高效的太阳能转换和存储。受自然光合作用的启发,研究人员开发了许多人工光合作用系统(APS),这些系统整合了各种光催化剂和生物催化剂,以在资源、环境、食品和能源领域转换和存储太阳能。为了提高系统效率和降低操作成本,APS 中引入了反应平台,因为它们允许具有更大的稳定性和连续处理能力。系统地了解反应平台如何影响人工光合作用的性能有助于设计具有卓越太阳能利用效率的 APS。在本综述中,我们讨论了最近的 APS 研究,特别是那些局限于平台上的研究。强调了不同平台的重要性及其对 APS 性能的影响。一般来说,受限平台可以通过邻近效应提高 APS 中光催化剂和生物催化剂的稳定性和可重复性,并改善光合作用性能。对于可以作为活性部分参与人工光合作用反应的功能平台,这些平台上 APS 组件的高度集成可以导致有效的电子转移、增强的光捕获或协同催化,从而实现卓越的光合作用性能。因此,APS 组件的集成有利于在人工光合作用中底物和光激发电子的转移。我们最后总结了 APS 发展的当前挑战,并进一步努力改进 APS。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验