Suppr超能文献

使用基于深度卷积神经网络的计算机辅助诊断系统在全景X线片中检测骨质疏松症:一项初步研究。

Osteoporosis detection in panoramic radiographs using a deep convolutional neural network-based computer-assisted diagnosis system: a preliminary study.

作者信息

Lee Jae-Seo, Adhikari Shyam, Liu Liu, Jeong Ho-Gul, Kim Hyongsuk, Yoon Suk-Ja

机构信息

Department of Oral and Maxillofacial Radiology, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, South Korea.

Division of Electronics Engineering, Chonbuk National University, Jeonju, South Korea.

出版信息

Dentomaxillofac Radiol. 2019 Jan;48(1):20170344. doi: 10.1259/dmfr.20170344. Epub 2018 Jul 13.

Abstract

OBJECTIVES

To evaluate the diagnostic performance of a deep convolutional neural network (DCNN)-based computer-assisted diagnosis (CAD) system in the detection of osteoporosis on panoramic radiographs, through a comparison with diagnoses made by oral and maxillofacial radiologists.

METHODS

Oral and maxillofacial radiologists with >10 years of experience reviewed the panoramic radiographs of 1268 females {mean [± standard deviation (SD)] age: 52.5 ± 22.3 years} and made a diagnosis of osteoporosis when cortical erosion of the mandibular inferior cortex was observed. Among the females, 635 had no osteoporosis [mean (± SD) age: 32.8 ± SD 12.1 years] and 633 had osteoporosis (72.2 ± 8.5 years). All panoramic radiographs were analysed using three CAD systems, single-column DCNN (SC-DCNN), single-column with data augmentation DCNN (SC-DCNN Augment) and multicolumn DCNN (MC-DCNN). Among the radiographs, 200 panoramic radiographs [mean (± SD) patient age: 63.9 ± 10.7 years] were used for testing the performance of the DCNN in detecting osteoporosis in this study. The diagnostic performance of the DCNN-based CAD system was assessed by receiver operating characteristic (ROC) analysis.

RESULTS

The area under the curve (AUC) values obtained using SC-DCNN, SC-DCNN (Augment) and MC-DCNN were 0.9763, 0.9991 and 0.9987, respectively.

CONCLUSIONS

The DCNN-based CAD system showed high agreement with experienced oral and maxillofacial radiologists in detecting osteoporosis. A DCNN-based CAD system could provide information to dentists for the early detection of osteoporosis, and asymptomatic patients with osteoporosis can then be referred to the appropriate medical professionals.

摘要

目的

通过与口腔颌面放射科医生的诊断结果进行比较,评估基于深度卷积神经网络(DCNN)的计算机辅助诊断(CAD)系统在全景X线片上检测骨质疏松症的诊断性能。

方法

1268名女性{平均[±标准差(SD)]年龄:52.5±22.3岁}的全景X线片由10年以上经验的口腔颌面放射科医生进行阅片,当下颌骨下缘皮质出现侵蚀时诊断为骨质疏松症。在这些女性中,635名无骨质疏松症[平均(±SD)年龄:32.8±12.1岁],633名患有骨质疏松症(72.2±8.5岁)。所有全景X线片均使用三种CAD系统进行分析,即单列DCNN(SC-DCNN)、带数据增强的单列DCNN(SC-DCNN Augment)和多列DCNN(MC-DCNN)。在这些X线片中,200张全景X线片[平均(±SD)患者年龄:63.9±10.7岁]用于本研究中测试DCNN检测骨质疏松症的性能。基于DCNN的CAD系统的诊断性能通过受试者操作特征(ROC)分析进行评估。

结果

使用SC-DCNN、SC-DCNN(Augment)和MC-DCNN获得的曲线下面积(AUC)值分别为0.9763、0.9991和0.9987。

结论

基于DCNN的CAD系统在检测骨质疏松症方面与经验丰富的口腔颌面放射科医生高度一致。基于DCNN的CAD系统可为牙医提供信息以早期检测骨质疏松症,然后将无症状的骨质疏松症患者转诊给合适的医疗专业人员。

相似文献

引用本文的文献

本文引用的文献

1
Deep Learning in Medical Imaging: General Overview.医学成像中的深度学习:概述
Korean J Radiol. 2017 Jul-Aug;18(4):570-584. doi: 10.3348/kjr.2017.18.4.570. Epub 2017 May 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验