Suppr超能文献

应用概率和机理方法预测 Merry 岛非洲猪瘟的传播。

A combination of probabilistic and mechanistic approaches for predicting the spread of African swine fever on Merry Island.

机构信息

CIRAD, UMR ASTRE, F-34398 Montpellier, France; Univ Montpellier, UMR ASTRE, Montpellier, France.

INRAE, UMR ASTRE, F-34398 Montpellier, France; Univ Montpellier, UMR ASTRE, Montpellier, France.

出版信息

Epidemics. 2022 Sep;40:100596. doi: 10.1016/j.epidem.2022.100596. Epub 2022 Jun 25.

Abstract

Over the last decade African swine fever virus, one of the most virulent pathogens known to affect pigs, has devastated pork industries and wild pig populations throughout the world. Despite a growing literature on specific aspects of African swine fever transmission dynamics, it remains unclear which methods and approaches are most effective for controlling the disease during a crisis. As a consequence, an international modelling challenge was organized in which teams analyzed and responded to a stream of data from an in silico outbreak in the fictive country of Merry Island. In response to this outbreak, we developed a modelling approach that aimed to predict the evolution of the epidemic and evaluate the impact of potential control measures. Two independent models were developed: a stochastic mechanistic space-time compartmental model for characterizing the dissemination of the virus among wild boar; and a deterministic probabilistic risk model for quantifying infection probabilities in domestic pig herds. The combined results of these two models provided valuable information for anticipating the main risks of dissemination and maintenance of the virus (speed and direction of African swine fever spread among wild boar populations, pig herds at greatest risk of infection, the size of the epidemic in the short and long terms), for evaluating the impact of different control measures and for providing specific recommendations concerning control interventions.

摘要

在过去的十年中,非洲猪瘟病毒(African swine fever virus)已肆虐全球,这种病毒是已知的对猪最具致命性的病原体之一,它摧毁了世界各地的猪肉产业和野猪种群。尽管有关非洲猪瘟传播动态的具体方面的文献不断增加,但仍不清楚在危机期间哪些方法和途径最有效控制这种疾病。因此,组织了一次国际建模挑战赛,参赛团队分析并响应了来自虚拟 Merry 岛境内爆发的一系列数据。针对这次爆发,我们开发了一种建模方法,旨在预测疫情的演变并评估潜在控制措施的影响。我们开发了两个独立的模型:一个用于描述病毒在野猪中传播的随机机械时空隔室模型;以及一个用于量化家猪群感染概率的确定性概率风险模型。这两个模型的综合结果为预测病毒传播和维持的主要风险(野猪种群中非洲猪瘟的传播速度和方向、最易感染的猪群、短期和长期的疫情规模)、评估不同控制措施的影响以及提供有关控制干预的具体建议提供了有价值的信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验