Sitthiwirattham Thanin, Zeb Anwar, Chasreechai Saowaluck, Eskandari Zohreh, Tilioua Mouhcine, Djilali Salih
Mathematics Department, Faculty of Science and Technology, Suan Dusit University, Bangkok, Thailand.
Department of Mathematics, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan.
Results Phys. 2021 Sep;28:104668. doi: 10.1016/j.rinp.2021.104668. Epub 2021 Aug 12.
To describe the main propagation of the COVID-19 and has to find the control for the rapid spread of this viral disease in real life, in current manuscript a discrete form of the SEIR model is discussed. The main aim of this is to describe the viral disease in simplest way and the basic properties that are related with the nature of curves for susceptible and infected individuals are discussed here. The elementary numerical examples are given by using the real data of India and Algeria.
为描述新型冠状病毒肺炎(COVID-19)的主要传播情况,并在现实生活中找到控制这种病毒性疾病快速传播的方法,在当前手稿中讨论了SEIR模型的离散形式。这样做的主要目的是以最简单的方式描述这种病毒性疾病,并在此讨论与易感者和感染者曲线性质相关的基本特性。通过使用印度和阿尔及利亚的实际数据给出了基本的数值例子。