Suppr超能文献

用于评估牙本质物理特性的神经网络方法。

Neural network approach to evaluate the physical properties of dentin.

作者信息

Saghiri Mohammad Ali, Saghiri Ali Mohammad, Samadi Elham, Nath Devyani, Vakhnovetsky Julia, Morgano Steven M

机构信息

Biomaterial and Prosthodontics Laboratory, Department of Restorative Dentistry, Rutgers School of Dental Medicine, 185 South Orange Avenue, Newark, NJ, 07103, USA.

Department of Endodontics, University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA, USA.

出版信息

Odontology. 2023 Jan;111(1):68-77. doi: 10.1007/s10266-022-00726-4. Epub 2022 Jul 10.

Abstract

This study intended to evaluate the effects of inorganic trace elements such as magnesium (Mg), strontium (Sr), and zinc (Zn) on root canal dentin using an Artificial Neural Network (ANN). The authors obtained three hundred extracted human premolars from type II diabetic individuals and divided them into three groups according to the solutions used (Mg, Sr, or Zn). The authors subdivided the specimens for each experimental group into five subgroups according to the duration for which the authors soaked the teeth in the solution: 0 (control group), 1, 2, 5, and 10 min (n = 20). The authors then tested the specimens for root fracture resistance (RFR), surface microhardness (SμH), and tubular density (TD). The authors used the data obtained from half of the specimens in each subgroup (10 specimens) for the training of ANN. The authors then used the trained ANN to evaluate the remaining data. The authors analyzed the data by Kolmogorov-Smirnov, one-way ANOVA, post hoc Tukey, and linear regression analysis (P < 0.05). Treatment with Mg, Sr, and Zn significantly increased the values of RFR and SμH (P < 0.05), and decreased the values of TD in dentin specimens (P < 0.05). The authors did not notice any significant differences between evaluations by manual or ANN methods (P > 0.05). The authors concluded that Mg, Sr, and Zn may improve the RFR and SμH, and decrease the TD of root canal dentin in diabetic individuals. ANN may be used as a reliable method to evaluate the physical properties of dentin.

摘要

本研究旨在使用人工神经网络(ANN)评估镁(Mg)、锶(Sr)和锌(Zn)等无机微量元素对根管牙本质的影响。作者从II型糖尿病患者中获取了300颗拔除的人类前磨牙,并根据所使用的溶液(Mg、Sr或Zn)将它们分为三组。作者将每个实验组的标本根据牙齿在溶液中浸泡的时间细分为五个亚组:0(对照组)、1、2、5和10分钟(n = 20)。然后作者测试了标本的抗根折性(RFR)、表面显微硬度(SμH)和小管密度(TD)。作者使用每个亚组一半标本(10个标本)获得的数据来训练ANN。然后作者使用训练好的ANN来评估其余数据。作者通过Kolmogorov-Smirnov检验、单因素方差分析、事后Tukey检验和线性回归分析对数据进行了分析(P < 0.05)。用Mg、Sr和Zn处理显著提高了牙本质标本的RFR和SμH值(P < 0.05),并降低了TD值(P < 0.05)。作者没有注意到手动或ANN方法评估之间有任何显著差异(P > 0.05)。作者得出结论,Mg、Sr和Zn可能改善糖尿病患者根管牙本质的RFR和SμH,并降低其TD。ANN可作为评估牙本质物理性能的可靠方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验