Suppr超能文献

通过修饰后的量子点与氧化铁纳米粒子之间的静电力实现荧光/磁性纳米聚集,用于 U87MG 肿瘤细胞的双模式成像。

Fluorescent/magnetic nano-aggregation via electrostatic force between modified quantum dot and iron oxide nanoparticles for bimodal imaging of U87MG tumor cells.

机构信息

Nanobio Analytical Chemistry, Biomolecular Chemistry, Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.

Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.

出版信息

Anal Sci. 2022 Sep;38(9):1141-1147. doi: 10.1007/s44211-022-00153-z. Epub 2022 Jul 10.

Abstract

Imaging technology based on novel nanomaterials is burgeoning as a potential tool for exploring various physiological processes. We herein report a fluorescent and magnetic nanoprobe (QMNP-RGD) for bimodal imaging of in vitro tumor cells. The preparation of this multifunctional nanomaterial is divided into three steps. First, commercial quantum dots (QDs) with high fluorescence intensity are covalently modified with an RGD peptide, which can facilitate the tumor cell uptake by αβ integrin-induced active recognition. Superparamagnetic iron oxide (SPIO) nanoparticles (NPs) are then capped using a cationic polysaccharide to improve stability. Integration is finally achieved by convenient electrostatic binding. We successfully demonstrated that QMNP-RGD can be efficiently delivered into U87MG cells and used for fluorescence/magnetic resonance (MR) bimodal imaging. Other multimodal probes may be able to be designed for imaging based on this strategy of electrostatic binding.

摘要

基于新型纳米材料的成像技术正在蓬勃发展,有望成为探索各种生理过程的潜在工具。我们在此报告了一种用于体外肿瘤细胞的荧光和磁共振双模式成像的荧光磁性纳米探针(QMNP-RGD)。这种多功能纳米材料的制备分为三个步骤。首先,通过共价键将具有高荧光强度的商业量子点(QD)与 RGD 肽修饰,这可以通过αβ整联蛋白诱导的主动识别促进肿瘤细胞摄取。然后使用阳离子多糖包覆超顺磁性氧化铁(SPIO)纳米颗粒(NPs),以提高稳定性。最后通过方便的静电结合实现整合。我们成功地证明了 QMNP-RGD 可以有效地递送到 U87MG 细胞中,并用于荧光/磁共振(MR)双模式成像。根据这种静电结合策略,可能能够设计其他多模式探针用于成像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验