Suppr超能文献

机器学习量化肿瘤-基质比是肌肉浸润性膀胱癌的独立预后指标。

Machine Learning Quantified Tumor-Stroma Ratio Is an Independent Prognosticator in Muscle-Invasive Bladder Cancer.

机构信息

Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China.

Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan 430060, China.

出版信息

Int J Mol Sci. 2023 Feb 1;24(3):2746. doi: 10.3390/ijms24032746.

Abstract

Although the tumor-stroma ratio (TSR) has prognostic value in many cancers, the traditional semi-quantitative visual assessment method has inter-observer variability, making it impossible for clinical practice. We aimed to develop a machine learning (ML) algorithm for accurately quantifying TSR in hematoxylin-and-eosin (H&E)-stained whole slide images (WSI) and further investigate its prognostic effect in patients with muscle-invasive bladder cancer (MIBC). We used an optimal cell classifier previously built based on QuPath open-source software and ML algorithm for quantitative calculation of TSR. We retrospectively analyzed data from two independent cohorts to verify the prognostic significance of ML-based TSR in MIBC patients. WSIs from 133 MIBC patients were used as the discovery set to identify the optimal association of TSR with patient survival outcomes. Furthermore, we performed validation in an independent external cohort consisting of 261 MIBC patients. We demonstrated a significant prognostic association of ML-based TSR with survival outcomes in MIBC patients ( < 0.001 for all comparisons), with higher TSR associated with better prognosis. Uni- and multivariate Cox regression analyses showed that TSR was independently associated with overall survival ( < 0.001 for all analyses) after adjusting for clinicopathological factors including age, gender, and pathologic stage. TSR was found to be a strong prognostic factor that was not redundant with the existing staging system in different subgroup analyses ( < 0.05 for all analyses). Finally, the expression of six genes (DACH1, DEEND2A, NOTCH4, DTWD1, TAF6L, and MARCHF5) were significantly associated with TSR, revealing possible potential biological relevance. In conclusion, we developed an ML algorithm based on WSIs of MIBC patients to accurately quantify TSR and demonstrated its prognostic validity for MIBC patients in two independent cohorts. This objective quantitative method allows application in clinical practice while reducing the workload of pathologists. Thus, it might be of significant aid in promoting precise pathology services in MIBC.

摘要

虽然肿瘤基质比(TSR)在许多癌症中具有预后价值,但传统的半定量视觉评估方法存在观察者间变异性,因此无法在临床实践中应用。我们旨在开发一种机器学习(ML)算法,以准确量化苏木精和伊红(H&E)染色的全切片图像(WSI)中的 TSR,并进一步研究其在肌层浸润性膀胱癌(MIBC)患者中的预后作用。我们使用了之前基于 QuPath 开源软件和 ML 算法构建的最佳细胞分类器,用于定量计算 TSR。我们回顾性分析了来自两个独立队列的数据,以验证基于 ML 的 TSR 在 MIBC 患者中的预后意义。133 例 MIBC 患者的 WSI 用于发现组,以确定 TSR 与患者生存结局的最佳关联。此外,我们在由 261 例 MIBC 患者组成的独立外部队列中进行了验证。我们证明了基于 ML 的 TSR 与 MIBC 患者生存结局之间存在显著的预后关联(所有比较均<0.001),较高的 TSR 与较好的预后相关。单因素和多因素 Cox 回归分析表明,在调整包括年龄、性别和病理分期在内的临床病理因素后,TSR 与总生存率独立相关(所有分析均<0.001)。在不同的亚组分析中,TSR 被发现是一个强大的预后因素,与现有的分期系统不冗余(所有分析均<0.05)。最后,六个基因(DACH1、DEEND2A、NOTCH4、DTWD1、TAF6L 和 MARCHF5)的表达与 TSR 显著相关,揭示了可能的潜在生物学相关性。总之,我们开发了一种基于 MIBC 患者 WSI 的 ML 算法,以准确量化 TSR,并在两个独立队列中证明了其对 MIBC 患者的预后有效性。这种客观的定量方法允许在临床实践中应用,同时减少病理学家的工作量。因此,它可能对促进 MIBC 中精确的病理服务有重要帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ee1/9916896/0dd6c86bdf59/ijms-24-02746-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验