Suppr超能文献

DgbZIP3与DgbZIP2相互作用以增加菊花中耐冷胁迫相关基因的表达。

DgbZIP3 interacts with DgbZIP2 to increase the expression of for cold stress tolerance in chrysanthemum.

作者信息

Bai Huiru, Liao Xiaoqin, Li Xin, Wang Bei, Luo Yunchen, Yang Xiaohan, Tian Yuchen, Zhang Lei, Zhang Fan, Pan Yuanzhi, Jiang Beibei, Jia Yin, Liu Qinglin

机构信息

Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, China.

出版信息

Hortic Res. 2022 May 17;9:uhac105. doi: 10.1093/hr/uhac105. eCollection 2022.

Abstract

The bZIP transcription factor plays a very important role in abiotic stresses, e.g. drought, salt, and low-temperature stress, but the mechanism of action at low temperature is still unclear. In this study, overexpression of led to increased tolerance of chrysanthemum ( Ramat.) to cold stress, whereas antisense suppression of resulted in decreased tolerance. Electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP), luciferase complementary imaging analysis (LCI), and dual-luciferase reporter gene detection (DLA) experiments indicated that DgbZIP3 directly bound to the promoter of and activated its expression. DgbZIP2 was identified as a DgbZIP3-interacting protein using yeast two-hybrid, co-immunoprecipitation, LCI, and bimolecular fluorescence complementation assays. Overexpression of led to increased tolerance of chrysanthemum to cold stress, whereas antisense suppression of resulted in decreased tolerance. A ChIP-qPCR experiment showed that DgbZIP2 was highly enriched in the promoter of , while DLA, EMSA, and LCI experiments further showed that DgbZIP2 could not directly regulate the expression of . The above results show that DgbZIP3 interacts with DgbZIP2 to regulate the expression of to promote an increase in peroxidase activity, thereby regulating the balance of reactive oxygen species and improving the tolerance of chrysanthemum to low-temperature stress.

摘要

bZIP转录因子在非生物胁迫(如干旱、盐胁迫和低温胁迫)中发挥着非常重要的作用,但在低温下的作用机制仍不清楚。在本研究中,[基因名称]的过表达导致菊花([菊花品种学名])对冷胁迫的耐受性增强,而[基因名称]的反义抑制则导致耐受性降低。电泳迁移率变动分析(EMSA)、染色质免疫沉淀(ChIP)、荧光素酶互补成像分析(LCI)和双荧光素酶报告基因检测(DLA)实验表明,DgbZIP3直接结合到[基因名称]的启动子并激活其表达。使用酵母双杂交、免疫共沉淀、LCI和双分子荧光互补分析鉴定出DgbZIP2是一种与DgbZIP3相互作用的蛋白。[基因名称]的过表达导致菊花对冷胁迫的耐受性增强,而[基因名称]的反义抑制则导致耐受性降低。ChIP-qPCR实验表明,DgbZIP2在[基因名称]的启动子中高度富集,而DLA、EMSA和LCI实验进一步表明,DgbZIP2不能直接调节[基因名称]的表达。上述结果表明,DgbZIP3与DgbZIP2相互作用以调节[基因名称]的表达,从而促进过氧化物酶活性的增加,进而调节活性氧的平衡并提高菊花对低温胁迫的耐受性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6858/9271009/6ffaefc3ae58/uhac105f1.jpg

相似文献

1
DgbZIP3 interacts with DgbZIP2 to increase the expression of for cold stress tolerance in chrysanthemum.
Hortic Res. 2022 May 17;9:uhac105. doi: 10.1093/hr/uhac105. eCollection 2022.
2
Correction to: DgbZIP3 interacts with DgbZIP2 to increase the expression of for cold stress tolerance in chrysanthemum.
Hortic Res. 2025 Feb 24;12(2):uhaf047. doi: 10.1093/hr/uhaf047. eCollection 2025 Feb.
3
4
5
6
7
The transcriptional coactivator CmMBF1c is required for waterlogging tolerance in .
Hortic Res. 2022 Sep 21;9:uhac215. doi: 10.1093/hr/uhac215. eCollection 2022.
8
Lysine crotonylation of DgTIL1 at K72 modulates cold tolerance by enhancing DgnsLTP stability in chrysanthemum.
Plant Biotechnol J. 2021 Jun;19(6):1125-1140. doi: 10.1111/pbi.13533. Epub 2021 Jan 21.

引用本文的文献

2
Understanding cold stress response mechanisms in plants: an overview.
Front Plant Sci. 2024 Nov 6;15:1443317. doi: 10.3389/fpls.2024.1443317. eCollection 2024.
4
Multi-omic dissection of the cold resistance traits of white water lily.
Hortic Res. 2024 Feb 17;11(6):uhae093. doi: 10.1093/hr/uhae093. eCollection 2024 Jun.
6
Designing of future ornamental crops: a biotechnological driven perspective.
Hortic Res. 2023 Sep 25;10(11):uhad192. doi: 10.1093/hr/uhad192. eCollection 2023 Nov.
7
Research advance on cold tolerance in chrysanthemum.
Front Plant Sci. 2023 Sep 27;14:1259229. doi: 10.3389/fpls.2023.1259229. eCollection 2023.
8
ABF1 Positively Regulates Rice Chilling Tolerance via Inducing Trehalose Biosynthesis.
Int J Mol Sci. 2023 Jul 4;24(13):11082. doi: 10.3390/ijms241311082.
9
Advances in understanding cold tolerance in grapevine.
Plant Physiol. 2023 Jul 3;192(3):1733-1746. doi: 10.1093/plphys/kiad092.

本文引用的文献

2
3
Lysine crotonylation of DgTIL1 at K72 modulates cold tolerance by enhancing DgnsLTP stability in chrysanthemum.
Plant Biotechnol J. 2021 Jun;19(6):1125-1140. doi: 10.1111/pbi.13533. Epub 2021 Jan 21.
4
The bZIP transcription factor TabZIP15 improves salt stress tolerance in wheat.
Plant Biotechnol J. 2021 Feb;19(2):209-211. doi: 10.1111/pbi.13453. Epub 2020 Aug 13.
6
The bZIP73 transcription factor controls rice cold tolerance at the reproductive stage.
Plant Biotechnol J. 2019 Sep;17(9):1834-1849. doi: 10.1111/pbi.13104. Epub 2019 Mar 12.
7
Early selection of bZIP73 facilitated adaptation of japonica rice to cold climates.
Nat Commun. 2018 Aug 17;9(1):3302. doi: 10.1038/s41467-018-05753-w.
10
MADS-box family genes in sheepgrass and their involvement in abiotic stress responses.
BMC Plant Biol. 2018 Mar 14;18(1):42. doi: 10.1186/s12870-018-1259-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验