Université de Lyon, VetAgro Sup, Interactions Cellules Environnement (ICE), Lyon, France.
Univ Lyon, Univ Gustave Eiffel, Univ Claude Bernard Lyon 1, Lyon, France.
Open Vet J. 2022 May-Jun;12(3):341-350. doi: 10.5455/OVJ.2022.v12.i3.6. Epub 2022 May 29.
Cranial cruciate ligament rupture (CCLr) is the most common cause of hind limb lameness in dogs. Currently, surgical management of CCLr is mostly performed using tibial osteotomy techniques to modify the biomechanical conformation of the affected stifle. These surgical techniques have a significant complication rate, associated with persistent instability of the stifle which may lead to chronic postoperative pain. Over the last decade, studies have been published on various techniques of anatomical caudal cruciate ligament reconstruction in veterinary practice, using physiological autografts or woven synthetic implants.
The aim of this biomechanical study is to investigate the dynamic biomechanical behavior of a synthetic implant [ultrahigh molecular weight polyethylene (UHMWPE) implant] fixed with interference screws for the treatment of CCLr in dogs, according to a fatigue protocol (48 hours per test).
Seven stifles from four skeletally mature canine cadavers were implanted with the synthetic implant. It was fixed with four interference screws inserted in transversal and oblique tunnels in both the distal femur and the proximal tibia. For each case, 100,000 cycles were performed at 0.58 Hz, with traction loads ranging from 100 to 210 N.
Neither screw-bone assembly rupture nor a pull-out issue was observed during the dynamic tests. Linear stiffness of the implants associated with a fixation system with four interference screws increased over time. The final displacement did not exceed 3 mm for five of the seven specimens. Five of the seven synthetic implants yielded to a lengthening in functional range (0-3 mm). Linear stiffness was homogeneous among samples, showing a strong dynamic strength of the interference screw-based fixations of the UHMWPE implant in the femoral and tibial bones.
This study completes the existing literature on the biomechanical evaluation of passive stifle stabilization techniques with a testing protocol focused on cyclic loading at a given force level instead of driven by displacement. These biomechanical results should revive interest in intra-articular reconstruction after rupture of the CCLr in dogs.
十字韧带断裂(CCLr)是犬后腿跛行的最常见原因。目前,CCLr 的手术治疗大多采用胫骨截骨技术来改变受影响的膝关节的生物力学形态。这些手术技术的并发症发生率很高,与膝关节持续不稳定有关,可能导致慢性术后疼痛。在过去的十年中,已经发表了关于兽医实践中各种解剖后十字韧带重建技术的研究,使用生理自体移植物或编织合成植入物。
本生物力学研究旨在根据疲劳方案(每个测试 48 小时)研究用于治疗犬 CCLr 的合成植入物[超高分子量聚乙烯(UHMWPE)植入物]用干扰螺钉固定的动态生物力学行为。
从四个骨骼成熟的犬尸体中取出七个膝关节,用合成植入物植入。它用四个插入股骨远端和胫骨近端的横向和斜向隧道中的干扰螺钉固定。对于每个病例,在 0.58 Hz 下进行 100,000 次循环,牵引载荷范围为 100 至 210 N。
在动态测试过程中,既没有观察到螺钉-骨组件断裂,也没有观察到拔出问题。与四个干扰螺钉固定系统相关的植入物线性刚度随时间增加。七个标本中的五个最终位移不超过 3 毫米。七个合成植入物中的五个在功能范围内(0-3 毫米)产生了伸长。线性刚度在样品之间是均匀的,显示出基于干扰螺钉的 UHMWPE 植入物在股骨和胫骨中的固定具有很强的动态强度。
本研究完成了关于被动膝关节稳定技术的生物力学评估的现有文献,该测试协议侧重于在给定力水平下进行循环加载,而不是由位移驱动。这些生物力学结果应该会重新引起人们对犬 CCLr 断裂后关节内重建的兴趣。