Suppr超能文献

一种用于功能性近红外光谱分类的通用可扩展视觉框架。

A General and Scalable Vision Framework for Functional Near-Infrared Spectroscopy Classification.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2022;30:1982-1991. doi: 10.1109/TNSRE.2022.3190431. Epub 2022 Jul 22.

Abstract

Functional near-infrared spectroscopy (fNIRS), a non-invasive optical technique, is widely used to monitor brain activities for disease diagnosis and brain-computer interfaces (BCIs). Deep learning-based fNIRS classification faces three major barriers: limited datasets, confusing evaluation criteria, and domain barriers. We apply more appropriate evaluation methods to three open-access datasets to solve the first two barriers. For domain barriers, we propose a general and scalable vision fNIRS framework that converts multi-channel fNIRS signals into multi-channel virtual images using the Gramian angular difference field (GADF). We use the framework to train state-of-the-art visual models from computer vision (CV) within a few minutes, and the classification performance is competitive with the latest fNIRS models. In cross-validation experiments, visual models achieve the highest average classification results of 78.68% and 73.92% on mental arithmetic and word generation tasks, respectively. Although visual models are slightly lower than the fNIRS models on unilateral finger- and foot-tapping tasks, the F1-score and kappa coefficient indicate that these differences are insignificant in subject-independent experiments. Furthermore, we study fNIRS signal representations and the classification performance of sequence-to-image methods. We hope to introduce rich achievements from the CV domain to improve fNIRS classification research.

摘要

功能近红外光谱(fNIRS)是一种非侵入性的光学技术,广泛用于疾病诊断和脑机接口(BCI)中的脑活动监测。基于深度学习的 fNIRS 分类面临三大障碍:数据集有限、评估标准混乱和领域障碍。我们应用更合适的评估方法来解决三个公开数据集的前两个障碍。对于领域障碍,我们提出了一个通用的、可扩展的视觉 fNIRS 框架,该框架使用 Gramian 角差场(GADF)将多通道 fNIRS 信号转换为多通道虚拟图像。我们使用该框架在几分钟内从计算机视觉(CV)训练最新的视觉模型,分类性能与最新的 fNIRS 模型相当。在交叉验证实验中,视觉模型在心理算术和单词生成任务上的平均分类结果分别达到了 78.68%和 73.92%的最高水平。虽然视觉模型在单侧手指和脚部敲击任务上略低于 fNIRS 模型,但 F1 值和kappa 系数表明,在独立于受试者的实验中,这些差异并不显著。此外,我们研究了 fNIRS 信号表示和序列到图像方法的分类性能。我们希望引入 CV 领域的丰富成果来改善 fNIRS 分类研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验