Suppr超能文献

土壤微生物组、基因、碳基质类别以及基于氟调聚物前体的生物转化的纽带。

Nexus of Soil Microbiomes, Genes, Classes of Carbon Substrates, and Biotransformation of Fluorotelomer-Based Precursors.

机构信息

Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States.

Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States.

出版信息

Environ Sci Technol. 2024 Nov 19;58(46):20553-20565. doi: 10.1021/acs.est.4c06471. Epub 2024 Nov 5.

Abstract

The unpredictable biodegradation of fluorotelomer (FT)-based per- and polyfluoroalkyl substances (PFAS) causes complicated risk management of PFAS-impacted sites. Here, we have successfully used redundancy analysis to link FT-based precursor biodegradation to key microbes and genes of soil microbiomes shaped by different classes of carbon sources: alcohols (C2-C4), alkanes (C6 and C8), an aromatic compound (phenol), or a hydrocarbon surfactant (cocamidopropyl betaine [CPB]). All the enrichments defluorinated fluorotelomer alcohols (:2 FtOH; = 4, 6, 8) effectively and grew on 6:2 fluorotelomer sulfonate (6:2 FtS) as a sulfur source. The butanol-enriched culture showed the highest defluorination extent for FtOHs and 6:2 FtS due to the high microbial diversity and the abundance of desulfonating and defluorinating genes. The CPB-enriched culture accumulated more 5:3 fluorotelomer carboxylic acid, suggesting unique roles of and . Enhanced 6:2 FtOH defluorination was observed due to a synergism between two enrichments with different carbon source classes except for those with phenol- and CPB-enriched cultures. While the 6:2 fluorotelomer sulfonamidoalkyl betaine was not degraded, trace levels of 6:2 fluorotelomer sulfonamidoalkyl amines were detected. The identified species and genes involved in desulfonation, defluorination, and carbon source metabolism are promising biomarkers for assessing precursor degradation at the sites.

摘要

全氟烷基和多氟烷基物质(PFAS)的不可预测的生物降解导致了 PFAS 污染场地的复杂风险管理。在这里,我们成功地使用冗余分析将基于氟调聚物的前体生物降解与不同碳源类型塑造的土壤微生物组的关键微生物和基因联系起来:醇(C2-C4)、烷烃(C6 和 C8)、芳香族化合物(苯酚)或烃表面活性剂(椰油酰胺丙基甜菜碱[CPB])。所有的富集物都有效地脱氟了氟调聚物醇(:2 FtOH; = 4、6、8),并以 6:2 氟调聚物磺酸盐(6:2 FtS)作为硫源生长。由于微生物多样性高和脱硫、脱氟基因丰富,丁醇富集培养物对 FtOHs 和 6:2 FtS 的脱氟程度最高。CPB 富集培养物积累了更多的 5:3 氟调聚物羧酸,表明 和 具有独特的作用。除了与富含苯酚和 CPB 的培养物一起培养外,还观察到两种不同碳源类型的富集物之间的协同作用,增强了 6:2 FtOH 的脱氟作用。虽然 6:2 氟调聚物磺酰胺基烷基甜菜碱没有被降解,但检测到痕量的 6:2 氟调聚物磺酰胺基烷基胺。鉴定出的参与脱硫、脱氟和碳源代谢的物种和基因是评估现场前体降解的有前途的生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8af/11580179/930af2d1985f/es4c06471_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验