Suppr超能文献

一种用于无标记有效语义特征提取的半自动工具包。

A semi-automatic toolbox for markerless effective semantic feature extraction.

机构信息

Italian Institute of Technology (IIT), Genova, Italy.

Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genova and with the Machine Learning Genoa (MaLGa) Center, Genova, Italy.

出版信息

Sci Rep. 2022 Jul 13;12(1):11899. doi: 10.1038/s41598-022-16014-8.

Abstract

VisionTool is an open-source python toolbox for semantic features extraction, capable to provide accurate features detectors for different applications, including motion analysis, markerless pose estimation, face recognition and biological cell tracking. VisionTool leverages transfer-learning with a large variety of deep neural networks allowing high-accuracy features detection with few training data. The toolbox offers a friendly graphical user interface, efficiently guiding the user through the entire process of features extraction. To facilitate broad usage and scientific community contribution, the code and a user guide are available at https://github.com/Malga-Vision/VisionTool.git .

摘要

VisionTool 是一个开源的 Python 工具包,用于语义特征提取,能够为不同的应用程序提供准确的特征检测器,包括运动分析、无标记姿态估计、人脸识别和生物细胞跟踪。VisionTool 利用迁移学习和各种深度学习网络,仅用少量训练数据就能实现高精度的特征检测。该工具包提供了一个友好的图形用户界面,能够有效地引导用户完成整个特征提取过程。为了方便广泛使用和科学界的贡献,代码和用户指南可在 https://github.com/Malga-Vision/VisionTool.git 上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3538/9279291/3d22949fa1b9/41598_2022_16014_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验