Suppr超能文献

一种使用生成模型在小数据情况下进行反应发现的迁移学习方法。

A transfer learning approach for reaction discovery in small data situations using generative model.

作者信息

Singh Sukriti, Sunoj Raghavan B

机构信息

Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.

Centre for Machine Intelligence and Data Science, Indian Institute of Technology Bombay, Mumbai 400076, India.

出版信息

iScience. 2022 Jun 22;25(7):104661. doi: 10.1016/j.isci.2022.104661. eCollection 2022 Jul 15.

Abstract

Sustainable practices in chemical sciences can be better realized by adopting interdisciplinary approaches that combine the advantages of machine learning (ML) on the initially acquired small data in reaction discovery. Developing new reactions generally remains heuristic and even time and resource intensive. For instance, synthesis of fluorine-containing compounds, which constitute ∼20% of the marketed drugs, relies on deoxyfluorination of abundantly available alcohols. Herein, we demonstrate the use of a recurrent neural network-based deep generative model built on a library of just 37 alcohols for effective learning and exploration of the chemical space. The proof-of-concept ML model is able to generate good quality, synthetically accessible, higher-yielding novel alcohol molecules. This protocol would have superior utility for deployment into a practical reaction discovery pipeline.

摘要

通过采用跨学科方法,结合机器学习(ML)在反应发现中最初获取的小数据方面的优势,可以更好地实现化学科学中的可持续实践。开发新反应通常仍然是试探性的,甚至耗费时间和资源。例如,构成约20%市售药物的含氟化合物的合成依赖于大量可得醇的脱氧氟化反应。在此,我们展示了基于仅37种醇的库构建的基于循环神经网络的深度生成模型,用于有效学习和探索化学空间。这个概念验证的ML模型能够生成高质量、可合成获得、产率更高的新型醇分子。该方案在部署到实际反应发现流程中将具有卓越的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b0e/9272387/ba08e80a45cb/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验