文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过全面分析和验证揭示与癌症免疫和预后相关的免疫和干性相关基因及其在肺腺癌中的列线图。

Immune- and Stemness-Related Genes Revealed by Comprehensive Analysis and Validation for Cancer Immunity and Prognosis and Its Nomogram in Lung Adenocarcinoma.

机构信息

Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, China.

Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China.

出版信息

Front Immunol. 2022 Jun 27;13:829057. doi: 10.3389/fimmu.2022.829057. eCollection 2022.


DOI:10.3389/fimmu.2022.829057
PMID:35833114
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9271778/
Abstract

OBJECTIVE: Lung adenocarcinoma (LUAD) is a familiar lung cancer with a very poor prognosis. This study investigated the immune- and stemness-related genes to develop model related with cancer immunity and prognosis in LUAD. METHOD: The Cancer Genome Atlas (TCGA) was utilized for obtaining original transcriptome data and clinical information. Differential expression, prognostic value, and correlation with clinic parameter of mRNA stemness index (mRNAsi) were conducted in LUAD. Significant mRNAsi-related module and hub genes were screened using weighted gene coexpression network analysis (WGCNA). Meanwhile, immune-related differential genes (IRGs) were screened in LUAD. Stem cell index and immune-related differential genes (SC-IRGs) were screened and further developed to construct prognosis-related model and nomogram. Comprehensive analysis of hub genes and subgroups, involving enrichment in the subgroup [gene set enrichment analysis (GSEA)], gene mutation, genetic correlation, gene expression, immune, tumor mutation burden (TMB), and drug sensitivity, used bioinformatics and reverse transcription polymerase chain reaction (RT-PCR) for verification. RESULTS: Through difference analysis, mRNAsi of LUAD group was markedly higher than that of normal group. Clinical parameters (age, gender, and T staging) were ascertained to be highly relevant to mRNAsi. MEturquoise and MEblue were found to be the most significant modules (including positive and negative correlations) related to mRNAsi WGCNA. The functions and pathways of the two mRNAsi-related modules were mainly enriched in tumorigenesis, development, and metastasis. Combining stem cell index-related differential genes and immune-related differential genes, 30 prognosis-related SC-IRGs were screened Cox regression analysis. Then, 16 prognosis-related SC-IRGs were screened to construct a LASSO regression model at last. In addition, the model was successfully validated by using TCGA-LUAD and GSE68465, whereas c-index and the calibration curves were utilized to demonstrate the clinical value of our nomogram. Following the validation of the model, GSEA, immune cell correlation, TMB, clinical relevance, etc., have found significant difference in high- and low-risk groups, and 16-gene expression of the SC-IRG model also was tested by RT-PCR. , , , , , and were found markedly different expression between the tumor and normal group. CONCLUSION: The SC-IRG model and the prognostic nomogram could accurately predict LUAD survival. Our study used mRNAsi combined with immunity that may lay a foundation for the future research studies in LUAD.

摘要

目的:肺腺癌(LUAD)是一种常见的肺癌,预后极差。本研究旨在探讨与癌症免疫和 LUAD 预后相关的免疫和干性相关基因,建立与癌症免疫和预后相关的模型。

方法:利用癌症基因组图谱(TCGA)获取原始转录组数据和临床信息。在 LUAD 中进行差异表达、预后价值和与临床参数的相关性分析。采用加权基因共表达网络分析(WGCNA)筛选与 mRNAsi 相关的显著模块和枢纽基因。同时,筛选 LUAD 中的免疫相关差异基因(IRGs)。筛选干性相关差异基因和免疫相关差异基因(SC-IRGs),并进一步构建预后相关模型和列线图。利用生物信息学和逆转录聚合酶链反应(RT-PCR)对枢纽基因和亚组进行综合分析,包括亚组中的富集分析(基因集富集分析(GSEA))、基因突变、遗传相关性、基因表达、免疫、肿瘤突变负荷(TMB)和药物敏感性。

结果:通过差异分析,发现 LUAD 组的 mRNAsi 明显高于正常组。临床参数(年龄、性别和 T 分期)与 mRNAsi 高度相关。WGCNA 发现 MEturquoise 和 MEblue 是与 mRNAsi 最显著的模块(包括正相关和负相关)。两个 mRNAsi 相关模块的功能和途径主要富集在肿瘤发生、发展和转移中。结合干细胞指数相关差异基因和免疫相关差异基因,筛选出 30 个与预后相关的 SC-IRGs。然后,通过 Cox 回归分析筛选出 16 个与预后相关的 SC-IRGs,最后构建 LASSO 回归模型。此外,该模型还通过 TCGA-LUAD 和 GSE68465 进行了验证,通过 C 指数和校准曲线来证明我们的列线图的临床价值。在模型验证后,通过 GSEA、免疫细胞相关性、TMB、临床相关性等方法,在高低风险组中发现了显著差异,并且通过 RT-PCR 验证了 16 个基因表达的 SC-IRG 模型。、、、、、和在肿瘤组织和正常组织之间的表达差异有统计学意义。

结论:SC-IRG 模型和预后列线图可以准确预测 LUAD 患者的生存情况。本研究采用 mRNAsi 结合免疫的方法,可能为 LUAD 的未来研究奠定基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56ed/9271778/186d48960c5f/fimmu-13-829057-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56ed/9271778/df24bf6bfecc/fimmu-13-829057-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56ed/9271778/5b7cde57ea2f/fimmu-13-829057-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56ed/9271778/16e1f98eae57/fimmu-13-829057-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56ed/9271778/6314e8d1c150/fimmu-13-829057-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56ed/9271778/3f29789a54aa/fimmu-13-829057-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56ed/9271778/3e78ca4bb9de/fimmu-13-829057-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56ed/9271778/f70baa7f1747/fimmu-13-829057-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56ed/9271778/d5e70ac73e71/fimmu-13-829057-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56ed/9271778/186d48960c5f/fimmu-13-829057-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56ed/9271778/df24bf6bfecc/fimmu-13-829057-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56ed/9271778/5b7cde57ea2f/fimmu-13-829057-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56ed/9271778/16e1f98eae57/fimmu-13-829057-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56ed/9271778/6314e8d1c150/fimmu-13-829057-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56ed/9271778/3f29789a54aa/fimmu-13-829057-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56ed/9271778/3e78ca4bb9de/fimmu-13-829057-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56ed/9271778/f70baa7f1747/fimmu-13-829057-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56ed/9271778/d5e70ac73e71/fimmu-13-829057-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56ed/9271778/186d48960c5f/fimmu-13-829057-g009.jpg

相似文献

[1]
Immune- and Stemness-Related Genes Revealed by Comprehensive Analysis and Validation for Cancer Immunity and Prognosis and Its Nomogram in Lung Adenocarcinoma.

Front Immunol. 2022

[2]
Construction and validation of a prognostic model for stemness-related genes in lung adenocarcinoma.

Transl Cancer Res. 2024-3-31

[3]
mRNAsi Index: Machine Learning in Mining Lung Adenocarcinoma Stem Cell Biomarkers.

Genes (Basel). 2020-2-27

[4]
Cancer Stemness-Based Prognostic Immune-Related Gene Signatures in Lung Adenocarcinoma and Lung Squamous Cell Carcinoma.

Front Endocrinol (Lausanne). 2021

[5]
Identification of cancer stem cell-related biomarkers in lung adenocarcinoma by stemness index and weighted correlation network analysis.

J Cancer Res Clin Oncol. 2020-3-28

[6]
Identification of cancer stemness and M2 macrophage-associated biomarkers in lung adenocarcinoma.

Heliyon. 2023-8-16

[7]
Combination of tumor mutation burden and immune infiltrates for the prognosis of lung adenocarcinoma.

Int Immunopharmacol. 2021-9

[8]
scRNA-seq revealed high stemness epithelial malignant cell clusters and prognostic models of lung adenocarcinoma.

Sci Rep. 2024-2-14

[9]
Integrated Bioinformatics Analysis Identifies a New Stemness Index-Related Survival Model for Prognostic Prediction in Lung Adenocarcinoma.

Front Genet. 2022-4-8

[10]
Identification of a Novel Cancer Stemness-Associated ceRNA Axis in Lung Adenocarcinoma via Stemness Indices Analysis.

Oncol Res. 2021-9-7

引用本文的文献

[1]
ADRB2 is regulated by TRIM22 and facilitates lung adenocarcinoma progression via JAK2/STAT3 signaling pathway.

Sci Rep. 2025-7-1

[2]
Integrative stemness- and EMT-related gene signatures associated with prognosis and the immune microenvironment in lung adenocarcinoma.

Discov Oncol. 2025-6-18

[3]
Comprehensive Analysis Identifies Hyaluronan Mediated Motility Receptor and Cell Division Cycle 25C as Potential Prognostic Biomarkers in Head and Neck Squamous Cell Carcinoma.

Cancer Control. 2024

[4]
Analysis and identification of mRNAsi‑related expression signatures via RNA sequencing in lung cancer.

Oncol Lett. 2024-9-13

[5]
Molecular subgroup establishment and signature creation of lncRNAs associated with acetylation in lung adenocarcinoma.

Aging (Albany NY). 2024-1-17

[6]
Identification of specific prognostic markers for lung squamous cell carcinoma based on tumor progression, immune infiltration, and stem index.

Front Immunol. 2023

[7]
Identification of cancer stemness and M2 macrophage-associated biomarkers in lung adenocarcinoma.

Heliyon. 2023-8-16

[8]
Identification and validation of a muscle failure index to predict prognosis and immunotherapy in lung adenocarcinoma through integrated analysis of bulk and single-cell RNA sequencing data.

Front Immunol. 2022

本文引用的文献

[1]
Identification of molecular subtypes and a novel prognostic model of diffuse large B-cell lymphoma based on a metabolism-associated gene signature.

J Transl Med. 2022-4-25

[2]
Construction and Validation of a Prognostic Risk Model for Triple-Negative Breast Cancer Based on Autophagy-Related Genes.

Front Oncol. 2022-2-4

[3]
Identification of an immune gene-associated prognostic signature in patients with bladder cancer.

Cancer Gene Ther. 2022-5

[4]
Stemness Refines the Classification of Colorectal Cancer With Stratified Prognosis, Multi-Omics Landscape, Potential Mechanisms, and Treatment Options.

Front Immunol. 2022

[5]
Machine learning-based integration develops an immune-derived lncRNA signature for improving outcomes in colorectal cancer.

Nat Commun. 2022-2-10

[6]
Small Cell Lung Cancer, Version 2.2022, NCCN Clinical Practice Guidelines in Oncology.

J Natl Compr Canc Netw. 2021-12

[7]
Immunological Value of Prognostic Signature Based on Cancer Stem Cell Characteristics in Hepatocellular Carcinoma.

Front Cell Dev Biol. 2021-8-2

[8]
Identifying 8-mRNAsi Based Signature for Predicting Survival in Patients With Head and Neck Squamous Cell Carcinoma via Machine Learning.

Front Genet. 2020-10-29

[9]
Stemness Related Genes Revealed by Network Analysis Associated With Tumor Immune Microenvironment and the Clinical Outcome in Lung Adenocarcinoma.

Front Genet. 2020-9-16

[10]
PD-L1 lung cancer stem cells modify the metastatic lymph-node immunomicroenvironment in nsclc patients.

Cancer Immunol Immunother. 2021-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索