Suppr超能文献

通过拓扑原子提取形成的超薄平面内O/ZnIn₂S异质结构:有效CO光还原的最佳距离和电荷转移

Thin In-Plane In O /ZnIn S Heterostructure Formed by Topological-Atom-Extraction: Optimal Distance and Charge Transfer for Effective CO Photoreduction.

作者信息

Zhao Lin, Yang Bixia, Zhuang Guoxin, Wen Yonglin, Zhang Tingshi, Lin Mingxiong, Zhuang Zanyong, Yu Yan

机构信息

College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China.

Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China.

出版信息

Small. 2022 Jul;18(28):e2201668. doi: 10.1002/smll.202201668. Epub 2022 Jun 15.

Abstract

Exploitation of atomic-level principles to optimize the charge transfer on ultrathin 2D heterostructures is an emerging frontier in relieving the energy and environmental crisis. Herein, a facile "topological-atom-extraction" protocol is disclosed, i.e., selective extraction of Zn from ultrathin half-unit-cell ZnIn S (HZIS) can embed thin In O domain into 1.60 nm thick HZIS layer to create an atomically thin in-plane In O /HZIS heterostructure. Thanks to the optimal distance and capability of charge separation, the in-plane In O /HZIS heterostructure is among the best ZnIn S -based CO reduction reaction (CRR) photocatalysts, and indeed demonstrates a significant increase (from 6.8- to 128-fold) in CO production rate compared with those of out-plane ZIS@In O and out-plane In O -HZIS heterostructures. Density Functional Theory simulation reveals that whereas the out-plane heterostructure has a much smaller ∆q of 0.2-0.25 e, the in-plane heterostructure with "zero distance contact" has an optimal ∆q of 1.05 e between In O and HZIS that induces remarkable charge redistribution on the in-plane heterojunction interface and creates local electric field confined within the ultrathin layer. The charge redistribution efficiently directs the charge-carrier separation in S-scheme photocatalytic system and endows long-lifetime carrier to CRR active HZIS. The findings demonstrate the strong versatility of engineering atomic-level heterojunctions for efficient catalysts design.

摘要

利用原子级原理优化超薄二维异质结构上的电荷转移是缓解能源和环境危机的一个新兴前沿领域。在此,我们公开了一种简便的“拓扑原子提取”方案,即从超薄半单元 ZnInS(HZIS)中选择性提取 Zn,可以将薄的 In₂O₃ 域嵌入到 1.60 nm 厚的 HZIS 层中,以创建原子级薄的面内 In₂O₃/HZIS 异质结构。由于最佳的距离和电荷分离能力,面内 In₂O₃/HZIS 异质结构是基于 ZnInS 的最佳 CO₂ 还原反应(CRR)光催化剂之一,与面外 ZIS@In₂O₃ 和面外 In₂O₃-HZIS 异质结构相比,其 CO 生成速率确实显著提高(从 6.8 倍提高到 128 倍)。密度泛函理论模拟表明,面外异质结构的 ∆q 小得多,为 0.2 - 0.25 e,而具有“零距离接触”的面内异质结构在 In₂O₃ 和 HZIS 之间具有最佳的 ∆q 为 1.05 e,这会在面内异质结界面上引起显著的电荷重新分布,并在超薄层内产生局限的局部电场。电荷重新分布有效地引导了 S 型光催化系统中的电荷载流子分离,并赋予 CRR 活性 HZIS 长寿命载流子。这些发现证明了设计原子级异质结用于高效催化剂的强大通用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验