Deng Xianyu, Wen Zhenhai, Li Xuanhua, Macyk Wojciech, Yu Jiaguo, Xu Feiyan
Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China.
CAS Key Laboratory of Design and Assembly of Functional Nano-structures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
Small. 2024 Feb;20(8):e2305410. doi: 10.1002/smll.202305410. Epub 2023 Oct 15.
The conversion of CO into valuable solar fuels via photocatalysis is a promising strategy for addressing energy shortages and environmental crises. Here, novel In O @Co VO hierarchical heterostructures are fabricated by in situ growing Co VO nanorods onto In O nanofibers. First-principle calculations and X-ray photoelectron spectroscopy (XPS) measurements reveal the electron transfer between In O and Co VO driven by the difference in work functions, thus creating an interfacial electric field and bending the bands at the interfaces. In this case, the photogenerated electrons in In O transport to Co VO and recombine with its holes, indicating the formation of In O @Co VO S-scheme heterojunctions and resulting in effective separation of charge carriers, as confirmed by in situ irradiation XPS. The unique S-scheme mechanism, along with the enhanced optical absorption and the lower Gibbs free energy change for the production of CHO, significantly contributes to the efficient CO photoreduction into CO and CH in the absence of any molecule cocatalyst or scavenger. Density functional theory simulation and in situ diffuse reflectance infrared Fourier transform spectroscopy are employed to elucidate the reaction mechanism in detail.
通过光催化将一氧化碳转化为有价值的太阳能燃料是解决能源短缺和环境危机的一种有前景的策略。在此,通过在氧化铟纳米纤维上原位生长钒酸钴纳米棒制备了新型氧化铟@钒酸钴分级异质结构。第一性原理计算和X射线光电子能谱(XPS)测量揭示了由功函数差异驱动的氧化铟和钒酸钴之间的电子转移,从而产生界面电场并使界面处的能带弯曲。在这种情况下,氧化铟中的光生电子传输到钒酸钴并与其空穴复合,表明形成了氧化铟@钒酸钴S型异质结,并导致电荷载流子的有效分离,原位辐照XPS证实了这一点。独特的S型机制,以及增强的光吸收和较低的用于生成甲醛的吉布斯自由能变化,在没有任何分子助催化剂或清除剂的情况下,显著促进了一氧化碳光催化还原为一氧化碳和甲烷。采用密度泛函理论模拟和原位漫反射红外傅里叶变换光谱详细阐明反应机理。