Suppr超能文献

ResDAC-Net:一种利用残差双非对称空间核的新型胰腺分割模型。

ResDAC-Net: a novel pancreas segmentation model utilizing residual double asymmetric spatial kernels.

机构信息

Department of Artificial Intelligence, North China University of Science and Technology, Tangshan, 063009, China.

Department of Computing, Xi'an Jiaotong-Liverpool University, Suzhou, China.

出版信息

Med Biol Eng Comput. 2024 Jul;62(7):2087-2100. doi: 10.1007/s11517-024-03052-9. Epub 2024 Mar 8.

Abstract

The pancreas not only is situated in a complex abdominal background but is also surrounded by other abdominal organs and adipose tissue, resulting in blurred organ boundaries. Accurate segmentation of pancreatic tissue is crucial for computer-aided diagnosis systems, as it can be used for surgical planning, navigation, and assessment of organs. In the light of this, the current paper proposes a novel Residual Double Asymmetric Convolution Network (ResDAC-Net) model. Firstly, newly designed ResDAC blocks are used to highlight pancreatic features. Secondly, the feature fusion between adjacent encoding layers fully utilizes the low-level and deep-level features extracted by the ResDAC blocks. Finally, parallel dilated convolutions are employed to increase the receptive field to capture multiscale spatial information. ResDAC-Net is highly compatible to the existing state-of-the-art models, according to three (out of four) evaluation metrics, including the two main ones used for segmentation performance evaluation (i.e., DSC and Jaccard index).

摘要

胰腺不仅位于复杂的腹部背景中,还被其他腹部器官和脂肪组织包围,导致器官边界模糊。胰腺组织的准确分割对于计算机辅助诊断系统至关重要,因为它可用于手术规划、导航和器官评估。有鉴于此,本文提出了一种新的残差双非对称卷积网络(ResDAC-Net)模型。首先,使用新设计的 ResDAC 块来突出胰腺特征。其次,相邻编码层之间的特征融合充分利用了 ResDAC 块提取的低层次和深层次特征。最后,并行扩张卷积用于增加感受野以捕获多尺度空间信息。根据三个(四个中的两个)评估指标,包括用于分割性能评估的两个主要指标(即 DSC 和 Jaccard 指数),ResDAC-Net 与现有的最先进模型高度兼容。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f518/11190007/b5a1b55d8c92/11517_2024_3052_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验