Suppr超能文献

在不聚合偏差的情况下估计荟萃分析中的交互作用和亚组特异性治疗效果:一种试验内框架。

Estimating interactions and subgroup-specific treatment effects in meta-analysis without aggregation bias: A within-trial framework.

机构信息

MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, University College London, London, UK.

出版信息

Res Synth Methods. 2023 Jan;14(1):68-78. doi: 10.1002/jrsm.1590. Epub 2022 Jul 28.

Abstract

Estimation of within-trial interactions in meta-analysis is crucial for reliable assessment of how treatment effects vary across participant subgroups. However, current methods have various limitations. Patients, clinicians and policy-makers need reliable estimates of treatment effects within specific covariate subgroups, on relative and absolute scales, in order to target treatments appropriately-which estimation of an interaction effect does not in itself provide. Also, the focus has been on covariates with only two subgroups, and may exclude relevant data if only a single subgroup is reported. Therefore, in this article we further develop the "within-trial" framework by providing practical methods to (1) estimate within-trial interactions across two or more subgroups; (2) estimate subgroup-specific ("floating") treatment effects that are compatible with the within-trial interactions and make maximum use of available data; and (3) clearly present this data using novel implementation of forest plots. We described the steps involved and apply the methods to two examples taken from previously published meta-analyses, and demonstrate a straightforward implementation in Stata based upon existing code for multivariate meta-analysis. We discuss how the within-trial framework and plots can be utilised with aggregate (or "published") source data, as well as with individual participant data, to effectively demonstrate how treatment effects differ across participant subgroups.

摘要

在荟萃分析中估计试验内的相互作用对于可靠评估治疗效果在参与者亚组之间的变化至关重要。然而,目前的方法存在各种局限性。患者、临床医生和政策制定者需要在特定协变量亚组内,以相对和绝对尺度,对治疗效果进行可靠的估计,以便有针对性地治疗——而交互作用效应的估计本身并不能提供。此外,重点一直放在只有两个亚组的协变量上,如果只报告了一个亚组,则可能会排除相关数据。因此,在本文中,我们通过提供实用的方法进一步发展了“试验内”框架,以(1)估计两个或更多亚组之间的试验内相互作用;(2)估计与试验内相互作用兼容并最大限度地利用可用数据的亚组特异性(“浮动”)治疗效果;(3)使用新颖的森林图实现清晰地呈现这些数据。我们描述了所涉及的步骤,并将这些方法应用于两个来自先前发表的荟萃分析的示例,展示了基于多变量荟萃分析现有代码的 Stata 中的简单实现。我们讨论了如何使用汇总(或“已发表”)源数据以及个体参与者数据来利用试验内框架和图,以便有效地展示治疗效果在参与者亚组之间的差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb99/10087172/9b1227dbe8fa/JRSM-14-68-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验