Centre for Reviews and Dissemination, University of York, Heslington, York, YO10 5DD, UK.
Syst Rev. 2022 Oct 5;11(1):211. doi: 10.1186/s13643-022-02086-0.
Medical interventions may be more effective in some types of individuals than others and identifying characteristics that modify the effectiveness of an intervention is a cornerstone of precision or stratified medicine. The opportunity for detailed examination of treatment-covariate interactions can be an important driver for undertaking an individual participant data (IPD) meta-analysis, rather than a meta-analysis using aggregate data. A number of recent modelling approaches are available. We apply these methods to the Perinatal Antiplatelet Review of International Studies (PARIS) Collaboration IPD dataset and compare estimates between them. We discuss the practical implications of applying these methods, which may be of interest to aid meta-analysists in the use of these, often complex models.Models compared included the two-stage meta-analysis of interaction terms and one-stage models which fit multiple random effects and separate within and between trial information. Models were fitted for nine covariates and five binary outcomes and results compared.Interaction terms produced by the methods were generally consistent. We show that where data are sparse and there is low heterogeneity in the covariate distributions across trials, the meta-analysis of interactions may produce unstable estimates and have issues with convergence. In this IPD dataset, varying assumptions by using multiple random effects in one-stage models or using only within trial information made little difference to the estimates of treatment-covariate interaction. Method choice will depend on datasets characteristics and individual preference.
医学干预措施在某些类型的个体中可能比其他类型更有效,而确定能够改变干预效果的特征是精准医学或分层医学的基石。有机会详细检查治疗协变量的相互作用可能是进行个体参与者数据(IPD)荟萃分析而不是使用汇总数据进行荟萃分析的重要驱动因素。目前有许多新的建模方法。我们将这些方法应用于围产期抗血小板研究国际合作(PARIS)合作的 IPD 数据集,并比较它们之间的估计值。我们讨论了应用这些方法的实际意义,这可能有助于元分析人员使用这些通常复杂的模型。比较的模型包括两阶段交互作用项的荟萃分析和一阶段模型,该模型拟合多个随机效应,并分别拟合试验内和试验间信息。对九个协变量和五个二分类结局进行了模型拟合,并比较了结果。这些方法产生的交互项通常是一致的。我们表明,在数据稀疏且试验间协变量分布的异质性较低的情况下,交互作用的荟萃分析可能会产生不稳定的估计值,并存在收敛问题。在这个 IPD 数据集中,通过在一阶段模型中使用多个随机效应或仅使用试验内信息来改变假设,对治疗协变量相互作用的估计值影响很小。方法的选择将取决于数据集的特征和个人偏好。