Suppr超能文献

磁性纳米流体的热学和流变学性质:最新进展与未来方向

Thermal and rheological properties of magnetic nanofluids: Recent advances and future directions.

作者信息

Vinod Sithara, Philip John

机构信息

Smart Materials Section, Corrosion Science and Technology Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, India; Homi Bhabha National Institute, Mumbai, India.

Smart Materials Section, Corrosion Science and Technology Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, India; Homi Bhabha National Institute, Mumbai, India.

出版信息

Adv Colloid Interface Sci. 2022 Sep;307:102729. doi: 10.1016/j.cis.2022.102729. Epub 2022 Jul 8.

Abstract

Technological advancement and miniaturization of electronic gadgets fueled intense research on nanofluids as potential candidates for cooling applications as a substitute to conventional heat transfer fluids. Among nanofluids, magnetic nanofluids, traditionally known as ferrofluids have attracted a lot of attention owing to their magnetic field tunable thermal conductivity and rheological properties due to the aggregation of the magnetic nanoparticles into chains or columns in the presence of the magnetic field. The field-induced aggregates act as low resistance pathways thereby improving thermal transport substantially. Recent studies show that ferrofluids with smaller size and narrow size distribution display significant enhancement in thermal conductivity in the presence of a magnetic field with negligible viscosity enhancement, which is ideal for effective thermal management of electronic devices, especially in miniature electronic devices. On the contrary, highly polydisperse ferrofluids containing large aggregates, show modest enhancement in thermal conductivity in the presence of a magnetic field and a huge enhancement in viscosity. The most recent studies show that magnetic field ramp rate has a profound effect on aggregation kinetics and thermal and rheological properties. The viscosity enhancement under an external stimulus impedes their practical use in electronics cooling, which warrants the need to attain a high thermal conductivity to viscosity ratio, under a modest magnetic field. Though there are several reviews on heat transfer in nanofluids and hybrid nanofluids, a comprehensive review on fundamental understanding of field-induced thermal and rheological properties in magnetic fluids is missing in the literature. This review provides a pedagogical description of the fundamental understanding of field-induced thermal and rheological properties in magnetic fluids, with the necessary background, key concepts, definitions, mechanisms, theoretical models, experimental protocols, and design of experiments. Many important case studies are presented along with the experimental design aspects. The review also provides a summary of important experimental studies with key findings, along with the key challenges and future research directions. The review is an ideal material for experimentalists and theoreticians practicing in the field of magnetic fluids, and also serves as an excellent reference for freshers who indent to begin research on this topic.

摘要

电子设备的技术进步和小型化推动了对纳米流体的深入研究,纳米流体有望作为传统传热流体的替代品,用于冷却应用。在纳米流体中,磁性纳米流体(传统上称为铁磁流体)因其磁场可调的热导率以及在磁场作用下磁性纳米颗粒聚集成链或柱而具有的流变特性,吸引了大量关注。磁场诱导的聚集体充当低电阻通道,从而显著改善热传输。最近的研究表明,尺寸较小且尺寸分布窄的铁磁流体在磁场存在下热导率显著提高,而粘度增加可忽略不计,这对于电子设备,尤其是微型电子设备的有效热管理而言是理想的。相反,含有大聚集体的高度多分散铁磁流体在磁场存在下热导率提高幅度适中,但粘度大幅增加。最新研究表明,磁场变化率对聚集动力学以及热学和流变学性质有深远影响。外部刺激下粘度的增加阻碍了它们在电子冷却中的实际应用,这就需要在适度磁场下实现高热导率与粘度比。尽管已有几篇关于纳米流体和混合纳米流体传热的综述,但文献中缺少对磁流体中场致热学和流变学性质基本理解的全面综述。本综述对磁流体中场致热学和流变学性质的基本理解进行了教学式描述,包括必要的背景、关键概念、定义、机制、理论模型、实验方案和实验设计。文中还介绍了许多重要的案例研究以及实验设计方面的内容。本综述还总结了重要的实验研究及其主要发现,以及关键挑战和未来研究方向。对于从事磁流体领域研究的实验人员和理论人员而言,本综述是理想的资料,对于打算开始研究该主题的新手来说也是极好的参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验