Biosystems Technology, Institute of Life Sciences and Biomedical Technologies, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745, Wildau, Germany; Biophysics of Photosynthesis, Institute for Biology, Humboldt University of Berlin, Philippstraße 13, 10115, Berlin, Germany.
Biophysics of Photosynthesis, Institute for Biology, Humboldt University of Berlin, Philippstraße 13, 10115, Berlin, Germany.
Biosens Bioelectron. 2022 Oct 15;214:114495. doi: 10.1016/j.bios.2022.114495. Epub 2022 Jun 26.
Synthetic materials can be combined with biological components in many ways. One example that provides scientists with multiple challenges is a photobioelectrode that converts sunlight into electrons in a biohybrid approach. In the present study several key parameters are evaluated concerning their influence on the direct electron transfer from a 3D indium tin oxide (ITO) electrode material to photosystem I (PSI) as a light-harvesting biomolecule. In contrast to previous investigations, no mediating molecule is added to shuttle the electrons to the luminal side of PSI. Thus, this setup is less complex than foregoing ones. The solution composition drastically influences the interaction of PSI with the ITO surface. Here, the application of higher buffer concentrations and the addition of salts are advantageous, whereas the nature of the buffer ions plays a minor role. The artificial electrode material's thickness is adjustable since a spin-coating procedure is used for preparation. With a 30 μm thick structure and immobilized PSI cathodic photocurrents up to 10.1 μA cm are obtained at 100 mW cm illumination intensity and an applied potential of -0.1V vs. Ag/AgCl. Over a period of three days the photobioelectrodes are illuminated for a total of 90 min and stored between the measurements at ambient temperature. The stability of the setup is noteworthy as still about 90% of the photocurrent is retained. The photocathode described here offers many positive features, including a high onset potential for the photocurrent starting sligthly above the redox potentail of P700, and applicability in a wide pH range from pH 5 to 8.
合成材料可以通过多种方式与生物成分结合。例如,光电生物电极将太阳光转化为电子,这为科学家提供了多个挑战。在本研究中,评估了几个关键参数,以了解它们对直接电子转移的影响,即从三维氧化铟锡(ITO)电极材料到光系统 I(PSI)的电子转移,PSI 作为一种光捕获生物分子。与以前的研究不同,没有添加中介分子来将电子转移到 PSI 的内腔侧。因此,这种设置比以前的设置更简单。溶液组成极大地影响 PSI 与 ITO 表面的相互作用。在这里,应用更高的缓冲浓度和添加盐是有利的,而缓冲离子的性质则起着较小的作用。由于采用了旋涂工艺进行制备,因此可以调节人工电极材料的厚度。使用 30μm 厚的结构和固定化 PSI,可以在 100mW/cm 的光照强度和-0.1V 相对于 Ag/AgCl 的施加电位下获得高达 10.1μA/cm 的阴极光电流。在三天的时间内,光电生物电极总共照射 90 分钟,并在测量之间储存在环境温度下。该设置的稳定性值得注意,因为仍保留约 90%的光电流。这里描述的光电阴极具有许多优点,包括光电流起始的起始电位略高于 P700 的氧化还原电位,以及在 pH 值为 5 至 8 的宽 pH 范围内的适用性。