Suppr超能文献

一般网络 Hindmarsh-Rose 模型中的时空模式

Spatiotemporal Patterns in a General Networked Hindmarsh-Rose Model.

作者信息

Zheng Qianqian, Shen Jianwei, Zhang Rui, Guan Linan, Xu Yong

机构信息

School of Science, Xuchang University, Xuchang, China.

School of Mathematics and Statistics, North China University of Water Resources and Electric Power, Zhengzhou, China.

出版信息

Front Physiol. 2022 Jun 28;13:936982. doi: 10.3389/fphys.2022.936982. eCollection 2022.

Abstract

Neuron modelling helps to understand the brain behavior through the interaction between neurons, but its mechanism remains unclear. In this paper, the spatiotemporal patterns is investigated in a general networked Hindmarsh-Rose (HR) model. The stability of the network-organized system without delay is analyzed to show the effect of the network on Turing instability through the Hurwitz criterion, and the conditions of Turing instability are obtained. Once the analysis of the zero-delayed system is completed, the critical value of the delay is derived to illustrate the profound impact of the given network on the collected behaviors. It is found that the difference between the collected current and the outgoing current plays a crucial role in neuronal activity, which can be used to explain the generation mechanism of the short-term memory. Finally, the numerical simulation is presented to verify the proposed theoretical results.

摘要

神经元建模有助于通过神经元之间的相互作用来理解大脑行为,但其机制仍不清楚。本文研究了一般网络化 Hindmarsh-Rose(HR)模型中的时空模式。通过Hurwitz准则分析了无延迟的网络组织系统的稳定性,以显示网络对图灵不稳定性的影响,并获得了图灵不稳定性的条件。一旦完成了零延迟系统的分析,就可以推导出延迟的临界值,以说明给定网络对所收集行为的深远影响。研究发现,收集到的电流与输出电流之间的差异在神经元活动中起着关键作用,这可用于解释短期记忆的产生机制。最后,进行了数值模拟以验证所提出的理论结果。

相似文献

1
Spatiotemporal Patterns in a General Networked Hindmarsh-Rose Model.
Front Physiol. 2022 Jun 28;13:936982. doi: 10.3389/fphys.2022.936982. eCollection 2022.
2
Hamiltonian energy in a modified Hindmarsh-Rose model.
Front Netw Physiol. 2024 Mar 26;4:1362778. doi: 10.3389/fnetp.2024.1362778. eCollection 2024.
3
Turing pattern induced by the directed ER network and delay.
Math Biosci Eng. 2022 Aug 17;19(12):11854-11867. doi: 10.3934/mbe.2022553.
4
Turing instability in the reaction-diffusion network.
Phys Rev E. 2020 Dec;102(6-1):062215. doi: 10.1103/PhysRevE.102.062215.
7
Turing instability mechanism of short-memory formation in multilayer FitzHugh-Nagumo network.
Front Psychiatry. 2023 Mar 27;14:1083015. doi: 10.3389/fpsyt.2023.1083015. eCollection 2023.
8
Dynamical Analysis of the Hindmarsh-Rose Neuron With Time Delays.
IEEE Trans Neural Netw Learn Syst. 2017 Aug;28(8):1953-1958. doi: 10.1109/TNNLS.2016.2557845. Epub 2016 May 25.
9
Topology identification and dynamical pattern recognition for Hindmarsh-Rose neuron model via deterministic learning.
Cogn Neurodyn. 2023 Feb;17(1):203-220. doi: 10.1007/s11571-022-09812-3. Epub 2022 May 13.
10

引用本文的文献

1
Hamiltonian energy in a modified Hindmarsh-Rose model.
Front Netw Physiol. 2024 Mar 26;4:1362778. doi: 10.3389/fnetp.2024.1362778. eCollection 2024.
3
Turing instability mechanism of short-memory formation in multilayer FitzHugh-Nagumo network.
Front Psychiatry. 2023 Mar 27;14:1083015. doi: 10.3389/fpsyt.2023.1083015. eCollection 2023.

本文引用的文献

1
The effect of landscape fragmentation on Turing-pattern formation.
Math Biosci Eng. 2022 Jan 7;19(3):2506-2537. doi: 10.3934/mbe.2022116.
2
Emergent Dynamics and Spatio Temporal Patterns on Multiplex Neuronal Networks.
Front Comput Neurosci. 2021 Dec 2;15:774969. doi: 10.3389/fncom.2021.774969. eCollection 2021.
3
Studies of Turing pattern formation in zebrafish skin.
Philos Trans A Math Phys Eng Sci. 2021 Dec 27;379(2213):20200274. doi: 10.1098/rsta.2020.0274. Epub 2021 Nov 8.
4
Pattern formation in a 2-population homogenized neuronal network model.
J Math Neurosci. 2021 Jun 26;11(1):9. doi: 10.1186/s13408-021-00107-1.
5
Spontaneous Activity Induced by Gaussian Noise in the Network-Organized FitzHugh-Nagumo Model.
Neural Plast. 2020 Nov 24;2020:6651441. doi: 10.1155/2020/6651441. eCollection 2020.
7
How pattern formation in ring networks of excitatory and inhibitory spiking neurons depends on the input current regime.
Front Comput Neurosci. 2014 Jan 7;7:187. doi: 10.3389/fncom.2013.00187. eCollection 2013.
8
Multistability in networks of Hindmarsh-Rose neurons.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Dec;78(6 Pt 1):061917. doi: 10.1103/PhysRevE.78.061917. Epub 2008 Dec 18.
9
Memory without feedback in a neural network.
Neuron. 2009 Feb 26;61(4):621-34. doi: 10.1016/j.neuron.2008.12.012.
10
Noise-induced resonances in the Hindmarsh-Rose neuronal model.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Apr;65(4 Pt 1):041915. doi: 10.1103/PhysRevE.65.041915. Epub 2002 Apr 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验