Institute of Physics and Technology, Petrozavodsk State University, 33 Lenin str., 185910 Petrozavodsk, Russia.
Sensors (Basel). 2023 Aug 12;23(16):7137. doi: 10.3390/s23167137.
The study presents a bio-inspired chaos sensor model based on the perceptron neural network for the estimation of entropy of spike train in neurodynamic systems. After training, the sensor on perceptron, having 50 neurons in the hidden layer and 1 neuron at the output, approximates the fuzzy entropy of a short time series with high accuracy, with a determination coefficient of R0.9. The Hindmarsh-Rose spike model was used to generate time series of spike intervals, and datasets for training and testing the perceptron. The selection of the hyperparameters of the perceptron model and the estimation of the sensor accuracy were performed using the K-block cross-validation method. Even for a hidden layer with one neuron, the model approximates the fuzzy entropy with good results and the metric R0.5 ÷ 0.8. In a simplified model with one neuron and equal weights in the first layer, the principle of approximation is based on the linear transformation of the average value of the time series into the entropy value. An example of using the chaos sensor on spike train of action potential recordings from the L5 dorsal rootlet of rat is provided. The bio-inspired chaos sensor model based on an ensemble of neurons is able to dynamically track the chaotic behavior of a spike signal and transmit this information to other parts of the neurodynamic model for further processing. The study will be useful for specialists in the field of computational neuroscience, and also to create humanoid and animal robots, and bio-robots with limited resources.
本研究提出了一种基于感知器神经网络的生物启发混沌传感器模型,用于估计神经动力学系统中尖峰序列的熵。经过训练,具有 50 个隐藏层神经元和 1 个输出神经元的感知器传感器能够以高准确度逼近短时间序列的模糊熵,决定系数 R0.9。使用 Hindmarsh-Rose 尖峰模型生成尖峰间隔时间序列,并为感知器的训练和测试生成数据集。通过 K 块交叉验证方法选择感知器模型的超参数并估计传感器的准确性。即使在具有一个神经元的隐藏层中,该模型也能以良好的结果逼近模糊熵,度量值 R0.5 ÷ 0.8。在具有一个神经元和第一层中权重相等的简化模型中,逼近原理基于将时间序列的平均值线性变换为熵值。提供了一个使用混沌传感器对大鼠 L5 背根神经节动作电位记录中的尖峰序列进行分析的示例。基于神经元集合的生物启发混沌传感器模型能够动态跟踪尖峰信号的混沌行为,并将此信息传输到神经动力学模型的其他部分进行进一步处理。本研究将对计算神经科学领域的专家以及制造具有有限资源的类人机器人和生物机器人的专家有用。