Stanier Charles O, Pierce R Bradley, Abdi-Oskouei Maryam, Adelman Zachariah E, Al-Saadi Jay, Alwe Hariprasad D, Bertram Timothy H, Carmichael Gregory R, Christiansen Megan B, Cleary Patricia A, Czarnetzki Alan C, Dickens Angela F, Fuoco Marta A, Hughes Dagen D, Hupy Joseph P, Janz Scott J, Judd Laura M, Kenski Donna, Kowalewski Matthew G, Long Russell W, Millet Dylan B, Novak Gordon, Roozitalab Behrooz, Shaw Stephanie L, Stone Elizabeth A, Szykman James, Valin Lukas, Vermeuel Michael, Wagner Timothy J, Whitehill Andrew R, Williams David J
University of Iowa, Iowa City, Iowa.
Space Science and Engineering Center, University of Wisconsin-Madison, Madison, Wisconsin.
Bull Am Meteorol Soc. 2021 Dec 24;102(12):E2207-E2225. doi: 10.1175/BAMS-D-20-0061.1.
The Lake Michigan Ozone Study 2017 (LMOS 2017) was a collaborative multiagency field study targeting ozone chemistry, meteorology, and air quality observations in the southern Lake Michigan area. The primary objective of LMOS 2017 was to provide measurements to improve air quality modeling of the complex meteorological and chemical environment in the region. LMOS 2017 science questions included spatiotemporal assessment of nitrogen oxides (NO = NO + NO) and volatile organic compounds (VOC) emission sources and their influence on ozone episodes; the role of lake breezes; contribution of new remote sensing tools such as GeoTASO, Pandora, and TEMPO to air quality management; and evaluation of photochemical grid models. The observing strategy included GeoTASO on board the NASA UC-12 aircraft capturing NO and formaldehyde columns, an in situ profiling aircraft, two ground-based coastal enhanced monitoring locations, continuous NO columns from coastal Pandora instruments, and an instrumented research vessel. Local photochemical ozone production was observed on 2 June, 9-12 June, and 14-16 June, providing insights on the processes relevant to state and federal air quality management. The LMOS 2017 aircraft mapped significant spatial and temporal variation of NO emissions as well as polluted layers with rapid ozone formation occurring in a shallow layer near the Lake Michigan surface. Meteorological characteristics of the lake breeze were observed in detail and measurements of ozone, NO, nitric acid, hydrogen peroxide, VOC, oxygenated VOC (OVOC), and fine particulate matter (PM) composition were conducted. This article summarizes the study design, directs readers to the campaign data repository, and presents a summary of findings.
2017年密歇根湖臭氧研究(LMOS 2017)是一项多机构合作的实地研究,旨在对密歇根湖南部地区的臭氧化学、气象和空气质量进行观测。LMOS 2017的主要目标是提供测量数据,以改进该地区复杂气象和化学环境下的空气质量模型。LMOS 2017的科学问题包括对氮氧化物(NO = NO + NO)和挥发性有机化合物(VOC)排放源的时空评估及其对臭氧事件的影响;湖风的作用;GeoTASO、Pandora和TEMPO等新型遥感工具对空气质量管理的贡献;以及光化学网格模型的评估。观测策略包括搭载在美国国家航空航天局UC - 12飞机上的GeoTASO,用于获取NO和甲醛柱浓度;一架原位剖面飞机;两个地面沿海强化监测点;沿海Pandora仪器持续监测NO柱浓度;以及一艘配备仪器的研究船。在6月2日、6月9日至12日以及6月14日至16日观测到了当地光化学臭氧生成情况,为与州和联邦空气质量管理相关的过程提供了见解。LMOS 2017飞机绘制了NO排放的显著时空变化以及在密歇根湖表面附近浅层中快速形成臭氧的污染层。详细观测了湖风的气象特征,并对臭氧、NO、硝酸、过氧化氢、VOC、含氧VOC(OVOC)和细颗粒物(PM)成分进行了测量。本文总结了研究设计,引导读者访问活动数据存储库,并呈现了研究结果摘要。