Suppr超能文献

使用深度卷积神经网络在中等分辨率3D冷冻电镜图像中检测二级结构的探索性研究。

Exploratory Studies Detecting Secondary Structures in Medium Resolution 3D Cryo-EM Images Using Deep Convolutional Neural Networks.

作者信息

Haslam Devin, Zeng Tao, Li Rongjian, He Jing

机构信息

Department of Computer Science, Old Dominion University, Norfolk, VA, 23529.

Department of Computer Science, Washington State University, Pullman, WA 99164.

出版信息

ACM BCB. 2018 Aug;2018:628-632. doi: 10.1145/3233547.3233704.

Abstract

Cryo-electron microscopy (cryo-EM) is an emerging biophysical technique for structural determination of protein complexes. However, accurate detection of secondary structures is still challenging when cryo-EM density maps are at medium resolutions (5-10 Å). Most of existing methods are image processing methods that do not fully utilize available images in the cryo-EM database. In this paper, we present a deep learning approach to segment secondary structure elements as helices and β-sheets from medium-resolution density maps. The proposed 3D convolutional neural network is shown to detect secondary structure locations with an F1 score between 0.79 and 0.88 for six simulated test cases. The architecture was also applied to an experimentally-derived cryo-EM density map with good accuracy.

摘要

冷冻电子显微镜(cryo-EM)是一种用于确定蛋白质复合物结构的新兴生物物理技术。然而,当中等分辨率(5-10埃)的冷冻电镜密度图用于二级结构的准确检测时,仍然具有挑战性。现有的大多数方法都是图像处理方法,没有充分利用冷冻电镜数据库中的可用图像。在本文中,我们提出了一种深度学习方法,用于从中等分辨率的密度图中分割出作为螺旋和β折叠的二级结构元件。对于六个模拟测试案例,所提出的3D卷积神经网络能够以0.79至0.88之间的F1分数检测二级结构位置。该架构应用于实验获得的冷冻电镜密度图时也具有良好的准确性。

相似文献

2
A Tool for Segmentation of Secondary Structures in 3D Cryo-EM Density Map Components Using Deep Convolutional Neural Networks.
Front Bioinform. 2021 Nov 3;1:710119. doi: 10.3389/fbinf.2021.710119. eCollection 2021.
3
Deep Convolutional Neural Networks for Detecting Secondary Structures in Protein Density Maps from Cryo-Electron Microscopy.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2016 Dec;2016:41-46. doi: 10.1109/BIBM.2016.7822490. Epub 2017 Jan 19.
4
Protein secondary structure detection in intermediate-resolution cryo-EM maps using deep learning.
Nat Methods. 2019 Sep;16(9):911-917. doi: 10.1038/s41592-019-0500-1. Epub 2019 Jul 29.
5
Deep Learning for Validating and Estimating Resolution of Cryo-Electron Microscopy Density Maps .
Molecules. 2019 Mar 26;24(6):1181. doi: 10.3390/molecules24061181.
8
CR-I-TASSER: assemble protein structures from cryo-EM density maps using deep convolutional neural networks.
Nat Methods. 2022 Feb;19(2):195-204. doi: 10.1038/s41592-021-01389-9. Epub 2022 Feb 7.
10
EMNUSS: a deep learning framework for secondary structure annotation in cryo-EM maps.
Brief Bioinform. 2021 Nov 5;22(6). doi: 10.1093/bib/bbab156.

引用本文的文献

1
Determining Protein Secondary Structures in Heterogeneous Medium-Resolution Cryo-EM Images Using CryoSSESeg.
ACS Omega. 2024 Jun 8;9(24):26409-26416. doi: 10.1021/acsomega.4c02608. eCollection 2024 Jun 18.
3
EMNUSS: a deep learning framework for secondary structure annotation in cryo-EM maps.
Brief Bioinform. 2021 Nov 5;22(6). doi: 10.1093/bib/bbab156.
4
The de Rham-Hodge Analysis and Modeling of Biomolecules.
Bull Math Biol. 2020 Aug 8;82(8):108. doi: 10.1007/s11538-020-00783-2.
5
Haruspex: A Neural Network for the Automatic Identification of Oligonucleotides and Protein Secondary Structure in Cryo-Electron Microscopy Maps.
Angew Chem Int Ed Engl. 2020 Aug 24;59(35):14788-14795. doi: 10.1002/anie.202000421. Epub 2020 May 11.

本文引用的文献

1
CHALLENGES IN MATCHING SECONDARY STRUCTURES IN CRYO-EM: AN EXPLORATION.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2016 Dec;2016:1714-1719. doi: 10.1109/BIBM.2016.7822776. Epub 2017 Jan 19.
2
Deep Convolutional Neural Networks for Detecting Secondary Structures in Protein Density Maps from Cryo-Electron Microscopy.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2016 Dec;2016:41-46. doi: 10.1109/BIBM.2016.7822490. Epub 2017 Jan 19.
3
Modeling Beta-Traces for Beta-Barrels from Cryo-EM Density Maps.
Biomed Res Int. 2017;2017:1793213. doi: 10.1155/2017/1793213. Epub 2017 Jan 10.
4
2.9 Å Resolution Cryo-EM 3D Reconstruction of Close-Packed Virus Particles.
Structure. 2016 Feb 2;24(2):319-28. doi: 10.1016/j.str.2015.12.006. Epub 2016 Jan 14.
5
Solving the Secondary Structure Matching Problem in Cryo-EM De Novo Modeling Using a Constrained K-Shortest Path Graph Algorithm.
IEEE/ACM Trans Comput Biol Bioinform. 2014 Mar-Apr;11(2):419-30. doi: 10.1109/TCBB.2014.2302803.
6
Deep convolutional neural networks for annotating gene expression patterns in the mouse brain.
BMC Bioinformatics. 2015 May 7;16:147. doi: 10.1186/s12859-015-0553-9.
7
Deep convolutional neural networks for multi-modality isointense infant brain image segmentation.
Neuroimage. 2015 Mar;108:214-24. doi: 10.1016/j.neuroimage.2014.12.061. Epub 2015 Jan 3.
8
Tracing beta strands using StrandTwister from cryo-EM density maps at medium resolutions.
Structure. 2014 Nov 4;22(11):1665-76. doi: 10.1016/j.str.2014.08.017. Epub 2014 Oct 9.
9
Mitosis detection in breast cancer histology images with deep neural networks.
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):411-8. doi: 10.1007/978-3-642-40763-5_51.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验