Suppr超能文献

基于高度自适应 lasso 的非参数逆概率加权估计量。

Nonparametric inverse-probability-weighted estimators based on the highly adaptive lasso.

机构信息

Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York, USA.

Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine.

出版信息

Biometrics. 2023 Jun;79(2):1029-1041. doi: 10.1111/biom.13719. Epub 2022 Jul 27.

Abstract

Inverse-probability-weighted estimators are the oldest and potentially most commonly used class of procedures for the estimation of causal effects. By adjusting for selection biases via a weighting mechanism, these procedures estimate an effect of interest by constructing a pseudopopulation in which selection biases are eliminated. Despite their ease of use, these estimators require the correct specification of a model for the weighting mechanism, are known to be inefficient, and suffer from the curse of dimensionality. We propose a class of nonparametric inverse-probability-weighted estimators in which the weighting mechanism is estimated via undersmoothing of the highly adaptive lasso, a nonparametric regression function proven to converge at nearly -rate to the true weighting mechanism. We demonstrate that our estimators are asymptotically linear with variance converging to the nonparametric efficiency bound. Unlike doubly robust estimators, our procedures require neither derivation of the efficient influence function nor specification of the conditional outcome model. Our theoretical developments have broad implications for the construction of efficient inverse-probability-weighted estimators in large statistical models and a variety of problem settings. We assess the practical performance of our estimators in simulation studies and demonstrate use of our proposed methodology with data from a large-scale epidemiologic study.

摘要

逆概率加权估计是估计因果效应的最古老且潜在应用最广泛的一类方法。通过加权机制来调整选择偏差,这些方法通过构建消除选择偏差的伪人群来估计感兴趣的效果。尽管这些估计器易于使用,但它们需要正确指定加权机制的模型,并且已知效率低下,并且存在维度诅咒的问题。我们提出了一类非参数逆概率加权估计器,其中通过高度自适应套索的欠平滑来估计加权机制,该非参数回归函数已被证明以接近 -速率收敛到真实加权机制。我们证明了我们的估计量是渐近线性的,方差收敛到非参数效率边界。与双重稳健估计器不同,我们的程序既不需要导出有效的影响函数,也不需要指定条件结果模型。我们的理论发展对大型统计模型和各种问题设置中有效逆概率加权估计器的构建具有广泛的意义。我们在模拟研究中评估了我们的估计器的实际性能,并展示了如何使用我们提出的方法从大型流行病学研究中获取数据。

相似文献

6
Estimating population treatment effects from a survey subsample.从调查子样本估计总体治疗效果。
Am J Epidemiol. 2014 Oct 1;180(7):737-48. doi: 10.1093/aje/kwu197. Epub 2014 Sep 4.

引用本文的文献

6
Relative sparsity for medical decision problems.医学决策问题的相对稀疏性。
Stat Med. 2023 Aug 15;42(18):3067-3092. doi: 10.1002/sim.9755. Epub 2023 Jun 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验