Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, 138672, Singapore.
Institute of Molecular and Cellular Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.
Nat Commun. 2022 Jul 15;13(1):4118. doi: 10.1038/s41467-022-31764-9.
The hypoxic tumor microenvironment has been implicated in immune escape, but the underlying mechanism remains elusive. Using an in vitro culture system modeling human T cell dysfunction and exhaustion in triple-negative breast cancer (TNBC), we find that hypoxia suppresses immune effector gene expression, including in T and NK cells, resulting in immune effector cell dysfunction and resistance to immunotherapy. We demonstrate that hypoxia-induced factor 1α (HIF1α) interaction with HDAC1 and concurrent PRC2 dependency causes chromatin remolding resulting in epigenetic suppression of effector genes and subsequent immune dysfunction. Targeting HIF1α and the associated epigenetic machinery can reverse the immune effector dysfunction and overcome resistance to PD-1 blockade, as demonstrated both in vitro and in vivo using syngeneic and humanized mice models. These findings identify a HIF1α-mediated epigenetic mechanism in immune dysfunction and provide a potential strategy to overcome immune resistance in TNBC.
缺氧肿瘤微环境被认为与免疫逃逸有关,但潜在机制仍难以捉摸。我们使用体外培养系统模拟三阴性乳腺癌(TNBC)中人类 T 细胞功能障碍和耗竭,发现缺氧抑制免疫效应基因表达,包括在 T 和 NK 细胞中,导致免疫效应细胞功能障碍和对免疫治疗的抵抗。我们证明,缺氧诱导因子 1α(HIF1α)与组蛋白去乙酰化酶 1(HDAC1)的相互作用以及与 PRC2 的依赖性导致染色质重塑,从而导致效应基因的表观遗传抑制和随后的免疫功能障碍。靶向 HIF1α 和相关的表观遗传机制可以逆转免疫效应功能障碍,并克服对 PD-1 阻断的耐药性,这在体外和体内使用同种和人源化小鼠模型中都得到了证明。这些发现确定了免疫功能障碍中的 HIF1α 介导的表观遗传机制,并为克服 TNBC 中的免疫抵抗提供了一种潜在策略。