Suppr超能文献

利用图嵌入特征预测婴儿低出生体重。

Infant Low Birth Weight Prediction Using Graph Embedding Features.

机构信息

Department of Computer Science and Software Engineering, College of Information Technology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates.

Department of Information Systems and Security, College of Information Technology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates.

出版信息

Int J Environ Res Public Health. 2023 Jan 11;20(2):1317. doi: 10.3390/ijerph20021317.

Abstract

Low Birth weight (LBW) infants pose a serious public health concern worldwide in both the short and long term for infants and their mothers. Infant weight prediction prior to birth can help to identify risk factors and reduce the risk of infant morbidity and mortality. Although many Machine Learning (ML) algorithms have been proposed for LBW prediction using maternal features and produced considerable model performance, their performance needs to be improved so that they can be adapted in real-world clinical settings. Existing algorithms used for LBW classification often fail to capture structural information from the tabular dataset of patients with different complications. Therefore, to improve the LBW classification performance, we propose a solution by transforming the tabular data into a knowledge graph with the aim that patients from the same class (normal or LBW) exhibit similar patterns in the graphs. To achieve this, several features related to each node are extracted such as node embedding using node2vec algorithm, node degree, node similarity, nearest neighbors, etc. Our method is evaluated on a real-life dataset obtained from a large cohort study in the United Arab Emirates which contains data from 3453 patients. Multiple experiments were performed using the seven most commonly used ML models on the original dataset, graph features, and a combination of features, respectively. Experimental results show that our proposed method achieved the best performance with an area under the curve of 0.834 which is over 6% improvement compared to using the original risk factors without transforming them into knowledge graphs. Furthermore, we provide the clinical relevance of the proposed model that are important for the model to be adapted in clinical settings.

摘要

低出生体重 (LBW) 婴儿在短期和长期内都会对婴儿及其母亲的健康造成严重的公共卫生问题。在出生前预测婴儿的体重可以帮助识别风险因素,降低婴儿发病率和死亡率。虽然已经提出了许多使用母体特征进行 LBW 预测的机器学习 (ML) 算法,并取得了相当大的模型性能,但它们的性能仍需要提高,以便能够适应实际的临床环境。现有的用于 LBW 分类的算法通常无法从具有不同并发症的患者的表格数据集捕获结构信息。因此,为了提高 LBW 分类性能,我们提出了一种解决方案,即将表格数据转换为知识图,目标是使来自同一类(正常或 LBW)的患者在图中表现出相似的模式。为此,从节点 2vec 算法中提取了与每个节点相关的几个特征,例如节点嵌入、节点度、节点相似性、最近邻居等。我们的方法在从阿拉伯联合酋长国的一项大型队列研究中获得的真实数据集上进行了评估,该数据集包含 3453 名患者的数据。在原始数据集、图特征和特征组合上分别使用七种最常用的 ML 模型进行了多次实验。实验结果表明,与不将原始风险因素转换为知识图的情况下相比,我们提出的方法的曲线下面积达到 0.834,性能提高了 6%以上。此外,我们还提供了所提出模型的临床相关性,这对于模型在临床环境中的适应非常重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dc4/9859143/8cdf03aab911/ijerph-20-01317-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验