Suppr超能文献

一种用于无监督的低、极低和超低出生体重检测的高效可解释框架。

An efficient interpretable framework for unsupervised low, very low and extreme birth weight detection.

作者信息

Nawaz Ali, Ahmad Amir, Khan Shehroz S, Masud Mohammad Mehedy, Ghenimi Nadirah, Ahmed Luai A

机构信息

College of Information Technology, UAEU, Al Ain, UAE.

College of Engineering and Technology, American University of the Middle East, Dasman, Kuwait.

出版信息

PLoS One. 2025 Jan 30;20(1):e0317843. doi: 10.1371/journal.pone.0317843. eCollection 2025.

Abstract

Detecting low birth weight is crucial for early identification of at-risk pregnancies which are associated with significant neonatal and maternal morbidity and mortality risks. This study presents an efficient and interpretable framework for unsupervised detection of low, very low, and extreme birth weights. While traditional approaches to managing class imbalance require labeled data, our study explores the use of unsupervised learning to detect anomalies indicative of low birth weight scenarios. This method is particularly valuable in contexts where labeled data are scarce or labels for the anomaly class are not available, allowing for preliminary insights and detection that can inform further data labeling and more focused supervised learning efforts. We employed fourteen different anomaly detection algorithms and evaluated their performance using Area Under the Receiver Operating Characteristics (AUCROC) and Area Under the Precision-Recall Curve (AUCPR) metrics. Our experiments demonstrated that One Class Support Vector Machine (OCSVM) and Empirical-Cumulative-distribution-based Outlier Detection (ECOD) effectively identified anomalies across different birth weight categories. The OCSVM attained an AUCROC of 0.72 and an AUCPR of 0.0253 for extreme LBW detection, while the ECOD model showed competitive performance with an AUCPR of 0.045 for very low LBW cases. Additionally, a novel feature perturbation technique was introduced to enhance the interpretability of the anomaly detection models by providing insights into the relative importance of various prenatal features. The proposed interpretation methodology is validated by the clinician experts and reveals promise for early intervention strategies and improved neonatal care.

摘要

检测低出生体重对于早期识别高危妊娠至关重要,这些高危妊娠与显著的新生儿和孕产妇发病及死亡风险相关。本研究提出了一个高效且可解释的框架,用于无监督检测低、极低和极端出生体重。虽然传统的处理类别不平衡的方法需要标记数据,但我们的研究探索了使用无监督学习来检测指示低出生体重情况的异常。这种方法在标记数据稀缺或异常类别的标签不可用的情况下特别有价值,它可以提供初步的见解和检测结果,为进一步的数据标记和更有针对性的监督学习工作提供参考。我们使用了十四种不同的异常检测算法,并使用接收器操作特征曲线下面积(AUCROC)和精确召回率曲线下面积(AUCPR)指标评估了它们的性能。我们的实验表明,一类支持向量机(OCSVM)和基于经验累积分布的异常值检测(ECOD)有效地识别了不同出生体重类别的异常。对于极端低出生体重检测,OCSVM的AUCROC为0.72,AUCPR为0.0253,而ECOD模型在极低出生体重病例中表现出具有竞争力的性能,AUCPR为0.045。此外,还引入了一种新颖的特征扰动技术,通过深入了解各种产前特征的相对重要性来增强异常检测模型的可解释性。所提出的解释方法得到了临床专家的验证,并为早期干预策略和改善新生儿护理展现出前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa85/11781751/49af81756380/pone.0317843.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验