Younus Z M, Roach P, Forsyth N R
School of Pharmacy and Bioengineering, Keele University, Keele, UK.
Department of Clinical Laboratory Sciences, College of Pharmacy, University of Mosul, Mosul, Iraq.
Prog Biomater. 2022 Sep;11(3):297-309. doi: 10.1007/s40204-022-00196-5. Epub 2022 Jul 16.
Regeneration solutions for the osteochondral interface depth are limited, where multi-material implants have the potential to delaminate affecting the regeneration process and impacting the final integrity of tissue interface. Here we explore regionally mixed hydrogel networks, presenting distinct chemical features to determine their compatibility in supporting osteogenic or chondrogenic cell behaviour and differentiation. Poly(N-isopropylacrylamide) (pNIPAM) and poly(N-tert-butylacrylamide) (pNTBAM) hydrogels were assessed in terms of their chemical differences, mechanical strength, internal architecture, porosity and capacity to support cell viability, migration, and differentiation. pNTBAM polymerized with a Young's modulus of up to 371 ± 31 kPa compared to the more flexible pNIPAM, 16.5 ± 0.6 kPa. Viability testing revealed biocompatibility of both hydrogels with significantly increased cell numbers observed in pNTBAM (500 ± 95 viable cells/mm) than in pNIPAM (60 ± 3 viable cells/mm) (P ≤ 0.05). Mineralization determined through alkaline phosphatase (ALP) activity, calcium ion and annexin A2 markers of mineralization) and osteogenic behaviour (collagen I expression) were supported in both hydrogels, but to a greater extent in pNTBAM. pNTBAM supported significantly elevated levels of chondrogenic markers as evidenced by collagen II and glycosaminoglycan expression in comparison to little or no evidence in pNIPAM (P ≤ 0.05). In conclusion, structurally similar, chemically distinct, acrylamide hydrogels display variable capacities in supporting osteochondral cell behaviours. These systems demonstrate spatial control of cell interaction through simple changes in monomer chemistry. Fine control over chemical presentation during the fabrication of biomaterial implants could lead to greater efficacy and targeted regeneration of semi-complex tissues.
用于修复骨软骨界面深度的再生解决方案有限,多材料植入物有可能分层,影响再生过程并影响组织界面的最终完整性。在此,我们探索区域混合水凝胶网络,其具有独特的化学特性,以确定它们在支持成骨或软骨细胞行为及分化方面的兼容性。对聚(N-异丙基丙烯酰胺)(pNIPAM)和聚(N-叔丁基丙烯酰胺)(pNTBAM)水凝胶的化学差异、机械强度、内部结构、孔隙率以及支持细胞活力、迁移和分化的能力进行了评估。与更具柔韧性的pNIPAM(16.5±0.6 kPa)相比,pNTBAM聚合后的杨氏模量高达371±31 kPa。活力测试显示两种水凝胶均具有生物相容性,pNTBAM中观察到的细胞数量显著增加(500±95个活细胞/mm),高于pNIPAM(60±3个活细胞/mm)(P≤0.05)。通过碱性磷酸酶(ALP)活性、钙离子和矿化膜联蛋白A2标志物测定的矿化以及成骨行为(胶原蛋白I表达)在两种水凝胶中均得到支持,但在pNTBAM中程度更大。与pNIPAM中几乎没有或没有证据相比,pNTBAM支持的软骨生成标志物水平显著升高,如胶原蛋白II和糖胺聚糖表达所示(P≤0.05)。总之,结构相似、化学性质不同的丙烯酰胺水凝胶在支持骨软骨细胞行为方面表现出不同的能力。这些系统通过单体化学的简单变化展示了细胞相互作用的空间控制。在生物材料植入物制造过程中对化学呈现进行精细控制可能会带来更高的疗效和半复杂组织的靶向再生。