White River Junction VA Medical Center, 215 North Main Street, White River Junction, VT, 05009, USA; Geisel School of Medicine at Dartmouth, 1 Rope Ferry Rd, Hanover, NH, 03755, USA.
White River Junction VA Medical Center, 215 North Main Street, White River Junction, VT, 05009, USA.
J Psychiatr Res. 2024 Nov;179:322-329. doi: 10.1016/j.jpsychires.2024.09.031. Epub 2024 Sep 24.
Suicide is a leading cause of death. Suicide rates are particularly elevated among Department of Veterans Affairs (VA) patients. While VA has made impactful suicide prevention advances, efforts primarily target high-risk patients with documented suicide risk. This high-risk population accounts for less than 10% of VA patient suicide deaths. We previously evaluated epidemiological patterns among VA patients that had lower classified suicide risk and derived moderate- and low-risk groupings. Expanding upon VA's leading suicide prediction model, this study uses national VA data to refine high-, moderate-, and low-risk specific suicide prediction methods. We selected all VA patients who died by suicide in 2017 or 2018 (n = 4584), matching each case with five controls who remained alive during treatment year and shared suicide risk percentiles. We extracted all sample unstructured electronic health record notes, analyzed them using natural language processing, and applied machine-learning classification algorithms to develop risk-tier-specific predictive models. We calculated area under the curve (AUC) and suicide risk concentration to evaluate predictive accuracy and analyzed derived words. RESULTS: Our high-risk model (AUC = 0.621 (95% CI: 0.55-0.68)), moderate-risk (AUC = 0.669 (95% CI: 0.64-0.71)), and low-risk (AUC = 0.673 (95% CI: 0.63-0.72)) models offered significant predictive accuracy over VA's leading suicide prediction algorithm. Derived words varied considerably, the high-risk model including chronic condition service words, moderate-risk model including outpatient care, and low-risk model including acute condition care. Study suggests benefit of leveraging unstructured electronic health records and expands prediction resources for non-high-risk suicide decedents, an historically underserved population.
自杀是导致死亡的主要原因之一。退伍军人事务部(VA)的患者自杀率尤其高。虽然 VA 在预防自杀方面取得了重大进展,但这些努力主要针对有记录自杀风险的高风险患者。这部分高危人群占 VA 患者自杀死亡人数的不到 10%。我们之前评估了 VA 患者中自杀风险较低的人群的流行病学模式,并得出了中危和低危分组。在 VA 领先的自杀预测模型的基础上,本研究利用国家 VA 数据,完善了高危、中危和低危特定自杀预测方法。我们选择了 2017 年或 2018 年自杀的所有 VA 患者(n=4584),为每个病例匹配了 5 名在治疗年内仍存活且具有相同自杀风险百分位的对照。我们提取了所有样本的非结构化电子健康记录笔记,使用自然语言处理进行分析,并应用机器学习分类算法来开发风险分层特定的预测模型。我们计算了曲线下面积(AUC)和自杀风险集中程度来评估预测准确性,并分析了衍生词。结果:我们的高危模型(AUC=0.621(95% CI:0.55-0.68))、中危模型(AUC=0.669(95% CI:0.64-0.71))和低危模型(AUC=0.673(95% CI:0.63-0.72))在预测准确性方面均显著优于 VA 的领先自杀预测算法。衍生词差异很大,高危模型包括慢性疾病服务词,中危模型包括门诊护理,低危模型包括急性疾病护理。该研究表明,利用非结构化电子健康记录具有重要意义,并为非高危自杀死亡者(历史上服务不足的人群)扩展了预测资源。