Suppr超能文献

整合多种方法的神经毒性危害评估框架的现状与未来方向

Current status and future directions for a neurotoxicity hazard assessment framework that integrates approaches.

作者信息

Crofton Kevin M, Bassan Arianna, Behl Mamta, Chushak Yaroslav G, Fritsche Ellen, Gearhart Jeffery M, Marty Mary Sue, Mumtaz Moiz, Pavan Manuela, Ruiz Patricia, Sachana Magdalini, Selvam Rajamani, Shafer Timothy J, Stavitskaya Lidiya, Szabo David T, Szabo Steven T, Tice Raymond R, Wilson Dan, Woolley David, Myatt Glenn J

机构信息

R3Fellows LLC, Durham, NC, 27705, USA.

Innovatune srl, Via Giulio Zanon 130/D, 35129 Padova, Italy.

出版信息

Comput Toxicol. 2022 May;22. doi: 10.1016/j.comtox.2022.100223. Epub 2022 Mar 17.

Abstract

Neurotoxicology is the study of adverse effects on the structure or function of the developing or mature adult nervous system following exposure to chemical, biological, or physical agents. The development of more informative alternative methods to assess developmental (DNT) and adult (NT) neurotoxicity induced by xenobiotics is critically needed. The use of such alternative methods including approaches that predict DNT or NT from chemical structure (e.g., statistical-based and expert rule-based systems) is ideally based on a comprehensive understanding of the relevant biological mechanisms. This paper discusses known mechanisms alongside the current state of the art in DNT/NT testing. approaches available today that support the assessment of neurotoxicity based on knowledge of chemical structure are reviewed, and a conceptual framework for the integration of methods with experimental information is presented. Establishing this framework is essential for the development of protocols, namely standardized approaches, to ensure that assessments of NT and DNT based on chemical structures are generated in a transparent, consistent, and defendable manner.

摘要

神经毒理学是研究在接触化学、生物或物理因子后,发育中的或成熟的成体神经系统的结构或功能所受到的不利影响。迫切需要开发更具信息性的替代方法,以评估由外源性物质诱导的发育性神经毒性(DNT)和成人神经毒性(NT)。使用此类替代方法,包括从化学结构预测DNT或NT的方法(例如基于统计和基于专家规则的系统),理想情况下是基于对相关生物学机制的全面理解。本文讨论了已知机制以及DNT/NT测试的当前技术水平。综述了当今基于化学结构知识支持神经毒性评估的可用方法,并提出了将这些方法与实验信息整合的概念框架。建立这个框架对于制定方案(即标准化方法)至关重要,以确保基于化学结构的NT和DNT评估以透明、一致且可辩护的方式进行。

相似文献

1
Current status and future directions for a neurotoxicity hazard assessment framework that integrates approaches.
Comput Toxicol. 2022 May;22. doi: 10.1016/j.comtox.2022.100223. Epub 2022 Mar 17.
3
In silico toxicology protocols.
Regul Toxicol Pharmacol. 2018 Jul;96:1-17. doi: 10.1016/j.yrtph.2018.04.014. Epub 2018 Apr 17.
4
approaches in organ toxicity hazard assessment: current status and future needs in predicting liver toxicity.
Comput Toxicol. 2021 Nov;20. doi: 10.1016/j.comtox.2021.100187. Epub 2021 Sep 9.
7
Recent advances and current challenges of new approach methodologies in developmental and adult neurotoxicity testing.
Arch Toxicol. 2024 May;98(5):1271-1295. doi: 10.1007/s00204-024-03703-8. Epub 2024 Mar 13.
10
Retinoids and developmental neurotoxicity: Utilizing toxicogenomics to enhance adverse outcome pathways and testing strategies.
Reprod Toxicol. 2020 Sep;96:102-113. doi: 10.1016/j.reprotox.2020.06.007. Epub 2020 Jun 13.

引用本文的文献

1
Neural organoids as advanced tools for neurotoxicity modeling.
Curr Res Toxicol. 2025 Jul 11;9:100249. doi: 10.1016/j.crtox.2025.100249. eCollection 2025.
2
Developing a pragmatic consensus procedure supporting the ICH S1B(R1) weight of evidence carcinogenicity assessment.
Front Toxicol. 2024 Apr 5;6:1370045. doi: 10.3389/ftox.2024.1370045. eCollection 2024.
3
Recent advances and current challenges of new approach methodologies in developmental and adult neurotoxicity testing.
Arch Toxicol. 2024 May;98(5):1271-1295. doi: 10.1007/s00204-024-03703-8. Epub 2024 Mar 13.
4
Protecting Human and Animal Health: The Road from Animal Models to New Approach Methods.
Pharmacol Rev. 2024 Feb 13;76(2):251-266. doi: 10.1124/pharmrev.123.000967.
5
Comparative analysis between zebrafish and an automated live-cell assay to classify developmental neurotoxicant chemicals.
Toxicol Appl Pharmacol. 2023 Oct 1;476:116659. doi: 10.1016/j.taap.2023.116659. Epub 2023 Aug 20.
7
ProfhEX: AI-based platform for small molecules liability profiling.
J Cheminform. 2023 Jun 9;15(1):60. doi: 10.1186/s13321-023-00728-6.
9
Principles and Procedures for Assessment of Acute Toxicity Incorporating Methods.
Comput Toxicol. 2022 Nov;24. doi: 10.1016/j.comtox.2022.100237. Epub 2022 Jul 14.
10
Editorial: Methods and protocols in neurotoxicology.
Front Toxicol. 2022 Oct 21;4:1031667. doi: 10.3389/ftox.2022.1031667. eCollection 2022.

本文引用的文献

2
Evaluating Confidence in Toxicity Assessments Based on Experimental Data and Predictions.
Comput Toxicol. 2022 Feb;21. doi: 10.1016/j.comtox.2021.100204. Epub 2021 Nov 8.
3
Approaches In Carcinogenicity Hazard Assessment: Current Status and Future Needs.
Comput Toxicol. 2021 Nov;20. doi: 10.1016/j.comtox.2021.100191. Epub 2021 Sep 23.
4
approaches in organ toxicity hazard assessment: current status and future needs in predicting liver toxicity.
Comput Toxicol. 2021 Nov;20. doi: 10.1016/j.comtox.2021.100187. Epub 2021 Sep 9.
5
Effective exposure of chemicals in in vitro cell systems: A review of chemical distribution models.
Toxicol In Vitro. 2021 Jun;73:105133. doi: 10.1016/j.tiv.2021.105133. Epub 2021 Mar 1.
6
High-Throughput Transcriptomics Platform for Screening Environmental Chemicals.
Toxicol Sci. 2021 Apr 27;181(1):68-89. doi: 10.1093/toxsci/kfab009.
8
EFSA's OpenFoodTox: An open source toxicological database on chemicals in food and feed and its future developments.
Environ Int. 2021 Jan;146:106293. doi: 10.1016/j.envint.2020.106293. Epub 2020 Dec 8.
9
Simultaneous blood and brain microdialysis in a free-moving mouse to test blood-brain barrier permeability of chemicals.
Toxicol Rep. 2020 Nov 6;7:1542-1550. doi: 10.1016/j.toxrep.2020.10.023. eCollection 2020.
10
The Tox21 10K Compound Library: Collaborative Chemistry Advancing Toxicology.
Chem Res Toxicol. 2021 Feb 15;34(2):189-216. doi: 10.1021/acs.chemrestox.0c00264. Epub 2020 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验