Suppr超能文献

玉米与干燥相关性状的基因组预测策略

Genomic Prediction Strategies for Dry-Down-Related Traits in Maize.

作者信息

Ni Pengzun, Anche Mahlet Teka, Ruan Yanye, Dang Dongdong, Morales Nicolas, Li Lingyue, Liu Meiling, Wang Shu, Robbins Kelly R

机构信息

Shenyang Key Laboratory of Maize Genomic Selection Breeding, Liaoning Province Research Center of Plant Genetic Engineering Technology, College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China.

Section of Plant Breeding and Genetics, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, United States.

出版信息

Front Plant Sci. 2022 Jun 30;13:930429. doi: 10.3389/fpls.2022.930429. eCollection 2022.

Abstract

For efficient mechanical harvesting, low grain moisture content at harvest time is essential. Dry-down rate (DR), which refers to the reduction in grain moisture content after the plants enter physiological maturity, is one of the main factors affecting the amount of moisture in the kernels. Dry-down rate is estimated using kernel moisture content at physiological maturity and at harvest time; however, measuring kernel water content at physiological maturity, which is sometimes referred as kernel water content at black layer formation (BWC), is time-consuming and resource-demanding. Therefore, inferring BWC from other correlated and easier to measure traits could improve the efficiency of breeding efforts for dry-down-related traits. In this study, multi-trait genomic prediction models were used to estimate genetic correlations between BWC and water content at harvest time (HWC) and flowering time (FT). The results show there is moderate-to-high genetic correlation between the traits (0.24-0.66), which supports the use of multi-trait genomic prediction models. To investigate genomic prediction strategies, several cross-validation scenarios representing possible implementations of genomic prediction were evaluated. The results indicate that, in most scenarios, the use of multi-trait genomic prediction models substantially increases prediction accuracy. Furthermore, the inclusion of historical records for correlated traits can improve prediction accuracy, even when the target trait is not measured on all the plots in the training set.

摘要

为了实现高效机械收割,收获时较低的谷物含水量至关重要。干燥速率(DR)是指植株进入生理成熟后谷物含水量的降低,它是影响籽粒含水量的主要因素之一。干燥速率通过生理成熟时和收获时的籽粒含水量来估算;然而,测量生理成熟时的籽粒含水量,有时也称为黑层形成时的籽粒含水量(BWC),既耗时又需要资源。因此,从其他相关且易于测量的性状推断BWC可以提高与干燥速率相关性状的育种效率。在本研究中,使用多性状基因组预测模型来估计BWC与收获时含水量(HWC)和开花时含水量(FT)之间的遗传相关性。结果表明,这些性状之间存在中度到高度的遗传相关性(0.24 - 0.66),这支持了多性状基因组预测模型的使用。为了研究基因组预测策略,评估了代表基因组预测可能实施方式的几种交叉验证方案。结果表明,在大多数情况下,使用多性状基因组预测模型可大幅提高预测准确性。此外,纳入相关性状的历史记录可以提高预测准确性,即使在训练集中并非所有地块都测量了目标性状。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e264/9280646/22bca868b27d/fpls-13-930429-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验