Suppr超能文献

基于大数据驱动系统的公共卫生服务平台系统的改进。

Improvement of the Public Health Service Platform System Based on the Big Data-Driven System.

机构信息

School of Intelligence & Electronic Engineering, Dalian Neusoft University of Information, Dalian, Liaoning 116023, China.

出版信息

Comput Intell Neurosci. 2022 Jul 6;2022:1476779. doi: 10.1155/2022/1476779. eCollection 2022.

Abstract

At present, complex discrete dynamic systems are widely used in the field of medicine. The control system in the complex discrete dynamic model is gradually transformed into intelligent control. It has become the main research direction of researchers to improve the medical platform system by adding different modeling strategies. The traditional discrete modeling technology can only be used as the knowledge content of students' textbooks because it can no longer meet the needs of the development of human society. In order to improve the application of a discrete system in the public platform, this paper studies the improvement of the public health service platform system based on the complex discrete dynamic system. Firstly, a time-driven control strategy is proposed to study the output feedback control with random sampling in the platform. Then, the stability of random parameters and the addition of dynamic scheduling strategies are further studied. Compared with the traditional system, the optimized system greatly strengthens the data transmission problem of input and output channels. The results show that by improving the performance of the public health service platform system, the probability of problems in the process of data transmission is greatly reduced. After adding controllable and observable performance to the system, the stability of the whole system is further improved. The improved public health service platform system studied in this paper can store and transmit a large number of user data in the network environment, automatically maintaining the stability of the system and has a good social application value.

摘要

目前,复杂离散动态系统在医学领域得到了广泛应用。复杂离散动态模型中的控制系统逐渐向智能控制转变。通过添加不同的建模策略来提高医疗平台系统,已成为研究人员的主要研究方向。传统的离散建模技术由于已经不能满足人类社会发展的需求,只能作为学生教材的知识内容。为了提高离散系统在公共平台中的应用,本文基于复杂离散动态系统研究了公共卫生服务平台系统的改进。首先,提出了一种基于时间驱动的控制策略,研究了平台中具有随机采样的输出反馈控制。然后,进一步研究了随机参数的稳定性和动态调度策略的添加。与传统系统相比,优化后的系统大大增强了输入和输出通道的数据传输问题。结果表明,通过改进公共卫生服务平台系统的性能,大大降低了数据传输过程中出现问题的概率。在系统中添加可控和可观性能后,进一步提高了整个系统的稳定性。本文研究的改进后的公共卫生服务平台系统可以在网络环境中存储和传输大量用户数据,自动维持系统的稳定性,具有良好的社会应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a56/9279029/96bc53d8e9ca/CIN2022-1476779.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验