Suppr超能文献

三阴性乳腺癌新辅助化疗疗效的 co-clinical FDG-PET 影像组学特征。

Co-clinical FDG-PET radiomic signature in predicting response to neoadjuvant chemotherapy in triple-negative breast cancer.

机构信息

Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA.

Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA.

出版信息

Eur J Nucl Med Mol Imaging. 2022 Jan;49(2):550-562. doi: 10.1007/s00259-021-05489-8. Epub 2021 Jul 30.

Abstract

PURPOSE

We sought to exploit the heterogeneity afforded by patient-derived tumor xenografts (PDX) to first, optimize and identify robust radiomic features to predict response to therapy in subtype-matched triple negative breast cancer (TNBC) PDX, and second, to implement PDX-optimized image features in a TNBC co-clinical study to predict response to therapy using machine learning (ML) algorithms.

METHODS

TNBC patients and subtype-matched PDX were recruited into a co-clinical FDG-PET imaging trial to predict response to therapy. One hundred thirty-one imaging features were extracted from PDX and human-segmented tumors. Robust image features were identified based on reproducibility, cross-correlation, and volume independence. A rank importance of predictors using ReliefF was used to identify predictive radiomic features in the preclinical PDX trial in conjunction with ML algorithms: classification and regression tree (CART), Naïve Bayes (NB), and support vector machines (SVM). The top four PDX-optimized image features, defined as radiomic signatures (RadSig), from each task were then used to predict or assess response to therapy. Performance of RadSig in predicting/assessing response was compared to SUV, SUV, and lean body mass-normalized SUL measures.

RESULTS

Sixty-four out of 131 preclinical imaging features were identified as robust. NB-RadSig performed highest in predicting and assessing response to therapy in the preclinical PDX trial. In the clinical study, the performance of SVM-RadSig and NB-RadSig to predict and assess response was practically identical and superior to SUV, SUV, and SUL measures.

CONCLUSIONS

We optimized robust FDG-PET radiomic signatures (RadSig) to predict and assess response to therapy in the context of a co-clinical imaging trial.

摘要

目的

我们试图利用患者来源的肿瘤异种移植(PDX)的异质性,首先优化并确定稳健的放射组学特征,以预测三阴性乳腺癌(TNBC)PDX 中治疗的反应,其次,将 PDX 优化的图像特征应用于 TNBC 联合临床研究中,使用机器学习(ML)算法预测治疗反应。

方法

招募 TNBC 患者和匹配亚型的 PDX 参加 FDG-PET 联合临床成像试验,以预测治疗反应。从 PDX 和人体分割肿瘤中提取了 131 个成像特征。基于可重复性、互相关和体积独立性,确定了稳健的图像特征。使用 ReliefF 对预测因子的排名重要性进行分析,以结合 ML 算法(分类和回归树(CART)、朴素贝叶斯(NB)和支持向量机(SVM))在临床前 PDX 试验中识别预测性放射组学特征。然后,使用来自每个任务的前四个 PDX 优化的图像特征(定义为放射组学特征(RadSig))来预测或评估治疗反应。将 RadSig 预测/评估反应的性能与 SUV、SUV 和瘦体重归一化 SUL 测量值进行比较。

结果

在 131 个临床前成像特征中,有 64 个被确定为稳健。NB-RadSig 在预测和评估临床前 PDX 试验中的治疗反应方面表现最佳。在临床研究中,SVM-RadSig 和 NB-RadSig 预测和评估反应的性能几乎相同,优于 SUV、SUV 和 SUL 测量值。

结论

我们优化了稳健的 FDG-PET 放射组学特征(RadSig),以在联合临床成像试验中预测和评估治疗反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e38f/8803702/612c474bf485/259_2021_5489_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验