Haouchine Merzouk, Biache Coralie, Lorgeoux Catherine, Faure Pierre, Offroy Marc
LIEC, Université de Lorraine, CNRS, F-54000 Nancy, France.
GeoRessources, Université de Lorraine, CNRS, F-54000 Nancy, France.
ACS Omega. 2022 Jun 29;7(27):23653-23661. doi: 10.1021/acsomega.2c02256. eCollection 2022 Jul 12.
The characterization of organic compounds in polluted matrices by eco-friendly three-dimensional (3D) fluorescence spectroscopy coupled with chemometric algorithms constitutes a powerful alternative to the separation techniques conventionally used. However, the systematic presence of Rayleigh and Raman scattering signals in the excitation-emission matrices (EEMs) complicates the spectral decomposition via PARAllel FACtor analysis (PARAFAC) due to the nontrilinear structure of these signals. Likewise, the specific problem of selectivity in spectroscopy for unexpected chemical components in a complex sample may render its chemical interpretation difficult at first glance. The relevant chemical information can then be complicated to extract, especially if the raw data is noisy. There are several strategies to overcome these drawbacks, but weaknesses remain. As a consequence, a new alternative method is proposed to handle these interferences, the noise, and the rank deficiencies in the data and applied for the characterization of polycyclic aromatic compound (PAC) mixtures. It is based on effective truncated singular-value decomposition (MT-SVD) that does not require any prior knowledge of the raw data. The algorithm provides a valuable estimation of the global rank to choose on complex samples where selectivity problems are observed. It is a real alternative compared to other existing methods applied to the fluorescence matrix to filter the signal from noise or light scattering effects. The first exploratory results of the proposed algorithm are promising to handle matrix rank deficiencies as well as the effects of noise and light scattering on complex PAC mixtures.
通过环保型三维(3D)荧光光谱结合化学计量算法对污染基质中的有机化合物进行表征,构成了传统分离技术的有力替代方法。然而,由于瑞利散射和拉曼散射信号在激发 - 发射矩阵(EEMs)中的系统性存在,这些信号的非三线结构使得通过平行因子分析(PARAFAC)进行光谱分解变得复杂。同样,对于复杂样品中意外化学成分的光谱选择性特定问题,乍一看可能使其化学解释变得困难。相关化学信息的提取可能会变得复杂,特别是如果原始数据有噪声。有几种策略可以克服这些缺点,但仍然存在不足。因此,提出了一种新的替代方法来处理这些干扰、噪声和数据中的秩亏,并将其应用于多环芳烃化合物(PAC)混合物的表征。它基于有效的截断奇异值分解(MT - SVD),该方法不需要任何原始数据的先验知识。该算法为在观察到选择性问题的复杂样品上选择全局秩提供了有价值的估计。与应用于荧光矩阵以从噪声或光散射效应中过滤信号的其他现有方法相比,它是一种真正的替代方法。所提出算法的初步探索性结果有望处理矩阵秩亏以及噪声和光散射对复杂PAC混合物的影响。