University of New South Wales, Canberra, Australia.
J Digit Imaging. 2021 Dec;34(6):1387-1404. doi: 10.1007/s10278-021-00526-2. Epub 2021 Nov 2.
Developing a convolutional neural network (CNN) for medical image segmentation is a complex task, especially when dealing with the limited number of available labelled medical images and computational resources. This task can be even more difficult if the aim is to develop a deep network and using a complicated structure like attention blocks. Because of various types of noises, artefacts and diversity in medical images, using complicated network structures like attention mechanism to improve the accuracy of segmentation is inevitable. Therefore, it is necessary to develop techniques to address the above difficulties. Neuroevolution is the combination of evolutionary computation and neural networks to establish a network automatically. However, Neuroevolution is computationally expensive, specifically to create 3D networks. In this paper, an automatic, efficient, accurate, and robust technique is introduced to develop deep attention convolutional neural networks utilising Neuroevolution for both 2D and 3D medical image segmentation. The proposed evolutionary technique can find a very good combination of six attention modules to recover spatial information from downsampling section and transfer them to the upsampling section of a U-Net-based network-six different CT and MRI datasets are employed to evaluate the proposed model for both 2D and 3D image segmentation. The obtained results are compared to state-of-the-art manual and automatic models, while our proposed model outperformed all of them.
开发用于医学图像分割的卷积神经网络(CNN)是一项复杂的任务,尤其是在处理可用的标记医学图像数量有限和计算资源有限的情况下。如果目标是开发深层网络并使用注意力块等复杂结构,那么这项任务可能会更加困难。由于医学图像中存在各种类型的噪声、伪影和多样性,因此使用像注意力机制这样的复杂网络结构来提高分割的准确性是不可避免的。因此,有必要开发技术来解决上述困难。神经进化是将进化计算和神经网络结合起来自动建立网络的过程。然而,神经进化的计算成本很高,特别是在创建 3D 网络时。在本文中,我们介绍了一种自动、高效、准确和稳健的技术,利用神经进化为 2D 和 3D 医学图像分割开发深度注意力卷积神经网络。所提出的进化技术可以找到六个注意力模块的非常好的组合,从下采样部分恢复空间信息,并将其传输到基于 U-Net 的网络的上采样部分——六个不同的 CT 和 MRI 数据集被用于评估我们提出的用于 2D 和 3D 图像分割的模型。将获得的结果与最先进的手动和自动模型进行比较,而我们提出的模型优于所有这些模型。