Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
Infervision, Beijing, China.
Gastrointest Endosc. 2021 Jun;93(6):1261-1272.e2. doi: 10.1016/j.gie.2020.10.005. Epub 2020 Oct 13.
Recent advances in deep convolutional neural networks (CNNs) have led to remarkable results in digestive endoscopy. In this study, we aimed to develop CNN-based models for the differential diagnosis of benign esophageal protruded lesions using endoscopic images acquired during real clinical settings.
We retrospectively reviewed the images from 1217 patients who underwent white-light endoscopy (WLE) and EUS between January 2015 and April 2020. Three deep CNN models were developed to accomplish the following tasks: (1) identification of esophageal benign lesions from healthy controls using WLE images; (2) differentiation of 3 subtypes of esophageal protruded lesions (including esophageal leiomyoma [EL], esophageal cyst (EC], and esophageal papilloma [EP]) using WLE images; and (3) discrimination between EL and EC using EUS images. Six endoscopists blinded to the patients' clinical status were enrolled to interpret all images independently. Their diagnostic performances were evaluated and compared with the CNN models using the area under the receiver operating characteristic curve (AUC).
For task 1, the CNN model achieved an AUC of 0.751 (95% confidence interval [CI], 0.652-0.850) in identifying benign esophageal lesions. For task 2, the proposed model using WLE images for differentiation of esophageal protruded lesions achieved an AUC of 0.907 (95% CI, 0.835-0.979), 0.897 (95% CI, 0.841-0.953), and 0.868 (95% CI, 0.769-0.968) for EP, EL, and EC, respectively. The CNN model achieved equivalent or higher identification accuracy for EL and EC compared with skilled endoscopists. In the task of discriminating EL from EC (task 3), the proposed CNN model had AUC values of 0.739 (EL, 95% CI, 0.600-0.878) and 0.724 (EC, 95% CI, 0.567-0.881), which outperformed seniors and novices. Attempts to combine the CNN and endoscopist predictions led to significantly improved diagnostic accuracy compared with endoscopists interpretations alone.
Our team established CNN-based methodologies to recognize benign esophageal protruded lesions using routinely obtained WLE and EUS images. Preliminary results combining the results from the models and the endoscopists underscored the potential of ensemble models for improved differentiation of lesions in real endoscopic settings.
深度学习卷积神经网络(CNN)的最新进展在消化内镜领域取得了显著成果。本研究旨在开发基于 CNN 的模型,使用在真实临床环境中获取的内镜图像对良性食管隆起性病变进行鉴别诊断。
我们回顾性分析了 2015 年 1 月至 2020 年 4 月期间 1217 例接受白光内镜(WLE)和超声内镜(EUS)检查的患者的图像。开发了 3 种深度 CNN 模型来完成以下任务:(1)使用 WLE 图像从健康对照组中识别出良性食管病变;(2)使用 WLE 图像区分 3 种食管隆起性病变(包括食管平滑肌瘤[EL]、食管囊肿[EC]和食管乳头状瘤[EP]);(3)使用 EUS 图像区分 EL 和 EC。招募了 6 名对患者临床状况不知情的内镜医师独立解读所有图像。使用受试者工作特征曲线(ROC)下面积(AUC)评估并比较他们的诊断性能与 CNN 模型。
在任务 1 中,CNN 模型在识别良性食管病变方面的 AUC 为 0.751(95%置信区间[CI],0.652-0.850)。在任务 2 中,使用 WLE 图像对食管隆起性病变进行分类的建议模型的 AUC 分别为 0.907(95%CI,0.835-0.979)、0.897(95%CI,0.841-0.953)和 0.868(95%CI,0.769-0.968),分别用于 EP、EL 和 EC。与熟练的内镜医师相比,CNN 模型对 EL 和 EC 的识别准确率相当或更高。在区分 EL 和 EC(任务 3)的任务中,所提出的 CNN 模型的 AUC 值分别为 0.739(EL,95%CI,0.600-0.878)和 0.724(EC,95%CI,0.567-0.881),优于资深和新手内镜医师。尝试结合 CNN 和内镜医师的预测结果显著提高了诊断准确性,优于内镜医师的单独解释。
本研究团队建立了基于 CNN 的方法,使用常规获得的 WLE 和 EUS 图像识别良性食管隆起性病变。结合模型和内镜医师的结果进行初步分析,突出了集合模型在真实内镜环境下改善病变区分的潜力。