School of Software, East China Jiaotong University, Nanchang 330013, China.
Brief Bioinform. 2022 Sep 20;23(5). doi: 10.1093/bib/bbac292.
Increasing biomedical evidence has proved that the dysregulation of miRNAs is associated with human complex diseases. Identification of disease-related miRNAs is of great importance for disease prevention, diagnosis and remedy. To reduce the time and cost of biomedical experiments, there is a strong incentive to develop efficient computational methods to infer potential miRNA-disease associations. Although many computational approaches have been proposed to address this issue, the prediction accuracy needs to be further improved. In this study, we present a computational framework MKGAT to predict possible associations between miRNAs and diseases through graph attention networks (GATs) using dual Laplacian regularized least squares. We use GATs to learn embeddings of miRNAs and diseases on each layer from initial input features of known miRNA-disease associations, intra-miRNA similarities and intra-disease similarities. We then calculate kernel matrices of miRNAs and diseases based on Gaussian interaction profile (GIP) with the learned embeddings. We further fuse the kernel matrices of each layer and initial similarities with attention mechanism. Dual Laplacian regularized least squares are finally applied for new miRNA-disease association predictions with the fused miRNA and disease kernels. Compared with six state-of-the-art methods by 5-fold cross-validations, our method MKGAT receives the highest AUROC value of 0.9627 and AUPR value of 0.7372. We use MKGAT to predict related miRNAs for three cancers and discover that all the top 50 predicted results in the three diseases are confirmed by existing databases. The excellent performance indicates that MKGAT would be a useful computational tool for revealing disease-related miRNAs.
越来越多的生物医学证据证明,miRNA 的失调与人类复杂疾病有关。鉴定与疾病相关的 miRNA 对于疾病的预防、诊断和治疗具有重要意义。为了减少生物医学实验的时间和成本,开发有效的计算方法来推断潜在的 miRNA-疾病关联具有很强的激励作用。尽管已经提出了许多计算方法来解决这个问题,但预测准确性仍有待进一步提高。在这项研究中,我们提出了一种计算框架 MKGAT,通过使用双拉普拉斯正则化最小二乘法的图注意网络(GATs)来预测 miRNA 和疾病之间可能的关联。我们使用 GATs 从已知 miRNA-疾病关联、内 miRNA 相似性和内疾病相似性的初始输入特征中,在每个层上学习 miRNA 和疾病的嵌入。然后,我们根据学习到的嵌入,使用高斯相互作用谱(GIP)计算 miRNA 和疾病的核矩阵。我们进一步使用注意力机制融合每个层的核矩阵和初始相似度。最后,通过融合的 miRNA 和疾病核,使用双拉普拉斯正则化最小二乘法进行新的 miRNA-疾病关联预测。通过 5 折交叉验证与 6 种最先进的方法进行比较,我们的方法 MKGAT 获得了 0.9627 的最高 AUROC 值和 0.7372 的 AUPR 值。我们使用 MKGAT 预测了三种癌症的相关 miRNA,并发现三种疾病中排名前 50 的预测结果均得到了现有数据库的证实。优异的性能表明,MKGAT 将成为揭示疾病相关 miRNA 的有用计算工具。