Suppr超能文献

心物一如,上下同理:共同的机制可以支持试验内和试验间的类别学习动态。

As within, so without, as above, so below: Common mechanisms can support between- and within-trial category learning dynamics.

机构信息

Department of Psychology.

出版信息

Psychol Rev. 2022 Oct;129(5):1104-1143. doi: 10.1037/rev0000381. Epub 2022 Jul 18.

Abstract

Two fundamental difficulties when learning novel categories are deciding (a) what information is relevant and (b) when to use that information. Although previous theories have specified how observers learn to attend to relevant dimensions over time, those theories have largely remained silent about how attention should be allocated on a within-trial basis, which dimensions of information should be sampled, and how the temporal order of information sampling influences learning. Here, we use the adaptive attention representation model (AARM) to demonstrate that a common set of mechanisms can be used to specify: (a) How the distribution of attention is updated between trials over the course of learning and (b) how attention dynamically shifts among dimensions within a trial. We validate our proposed set of mechanisms by comparing AARM's predictions to observed behavior in four case studies, which collectively encompass different theoretical aspects of selective attention. We use both eye-tracking and choice response data to provide a stringent test of how attention and decision processes dynamically interact during category learning. Specifically, how does attention to selected stimulus dimensions gives rise to decision dynamics, and in turn, how do decision dynamics influence which dimensions are attended to via gaze fixations? (PsycInfo Database Record (c) 2022 APA, all rights reserved).

摘要

学习新类别时存在两个基本困难

(a) 确定哪些信息是相关的,以及 (b) 何时使用这些信息。尽管先前的理论已经指定了观察者如何随着时间的推移学会关注相关维度,但这些理论在很大程度上仍然没有说明应该如何在单次试验的基础上分配注意力,应该采样哪些信息维度,以及信息采样的时间顺序如何影响学习。在这里,我们使用自适应注意表示模型 (AARM) 来证明,一组共同的机制可以用于指定:(a) 在学习过程中,注意力在试验之间的分布是如何随着时间的推移而更新的,以及 (b) 注意力在单次试验中是如何在维度之间动态转移的。我们通过将 AARM 的预测与四个案例研究中的观察到的行为进行比较,验证了我们提出的这组机制,这些案例研究共同涵盖了选择性注意的不同理论方面。我们使用眼动追踪和选择反应数据,严格测试了注意和决策过程在类别学习过程中是如何动态交互的。具体来说,注意力是如何引起决策动态的,而决策动态又是如何通过注视固定来影响关注哪些维度的?(PsycInfo 数据库记录(c)2022 APA,保留所有权利)。

相似文献

5
Bidirectional influences of information sampling and concept learning.信息采样和概念学习的双向影响。
Psychol Rev. 2022 Mar;129(2):213-234. doi: 10.1037/rev0000287. Epub 2021 Jul 19.
10
Sequence as context in category learning: An eyetracking study.序列作为类别学习的上下文:一项眼动研究。
J Exp Psychol Learn Mem Cogn. 2019 Nov;45(11):1942-1954. doi: 10.1037/xlm0000693. Epub 2019 Feb 28.

引用本文的文献

5
The Role of Attention in Category Representation.注意在类别表示中的作用。
Cogn Sci. 2024 Apr;48(4):e13438. doi: 10.1111/cogs.13438.
6
Cognition: The power of simple associative learning.认知:简单联想学习的力量。
Curr Biol. 2023 Mar 27;33(6):R223-R225. doi: 10.1016/j.cub.2023.01.062.

本文引用的文献

3
Dissecting EXIT.剖析产时宫外治疗手术
J Math Psychol. 2020 Aug;97. doi: 10.1016/j.jmp.2020.102371. Epub 2020 May 12.
6
Bidirectional influences of information sampling and concept learning.信息采样和概念学习的双向影响。
Psychol Rev. 2022 Mar;129(2):213-234. doi: 10.1037/rev0000287. Epub 2021 Jul 19.
8
Searching for emotional salience.寻找情绪显著性。
Cognition. 2021 Sep;214:104730. doi: 10.1016/j.cognition.2021.104730. Epub 2021 May 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验